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A B S T R A C T

Cognitive computational neuroscience has received broad attention in recent years as an emerging area inte
grating cognitive science, neuroscience, and artificial intelligence. At the heart of this field, approaches using 
encoding models allow for explaining brain activity from latent and high-dimensional features, including arti
ficial neural networks. With the notable exception of temporal response function models that are applied to 
electroencephalography, most prior studies have focused on adult subjects, making it difficult to capture how 
brain representations change with learning and development. Here, we argue that future developmental 
cognitive neuroscience studies would benefit from approaches relying on encoding models. We provide an 
overview of encoding models used in adult functional magnetic resonance imaging research. This research has 
notably used data with a small number of subjects, but with a large number of samples per subject. Studies using 
encoding models also generally require task-based neuroimaging data. Though these represent challenges for 
developmental studies, we argue that these challenges may be overcome by using functional alignment tech
niques and naturalistic paradigms. These methods would facilitate encoding model analysis in developmental 
neuroimaging research, which may lead to important theoretical advances.

1. Introduction

There is a growing interest in understanding the computational 
principles underlying perception, action, and cognition (Kriegeskorte 
and Douglas, 2018; Naselaris et al., 2018). This emerging field of 
research, sometimes called, “cognitive computational neuroscience 
(CCN),” aims to bridge the gap between cognitive science, neuroscience, 
and artificial intelligence. In doing so, it may provide a framework for 
interdisciplinary research, such that cognitive theories and neural data 
may impose biologically plausible constraints on artificial intelligence 
systems while artificial intelligence may make testable predictions 
regarding neuro-cognitive theories.

Despite that growing interest, CCN has seldom been applied to the 
study of neuro-cognitive development, with the exception of a few dis
order classification studies that have made use of state-of-the-art arti
ficial neural networks (ANNs) (Joshi et al., 2023; Tomaz Da Silva et al., 
2021). Yet, by using non-invasive neuroimaging techniques such as 
functional magnetic resonance imaging (fMRI), magnetoencephalogra
phy (MEG), electroencephalography (EEG), and near-infrared 

spectroscopy (NIRS), cognitive neuroscientists have collected over the 
years a large amount of data. We argue that a computational approach is 
in a unique position to make use of such data to investigate how 
neuro-cognitive mechanisms may change dynamically with learning and 
development (Gilmore et al., 2018; Peelen and Downing, 2023; Thomas 
et al., 2019). For instance, Peelen and Downing (2023) have argued that 
cross-format decoding may inform cognitive theories as it allows re
searchers to test whether brain representations are shared between 
different stimulus types (e.g., symbolic and nonsymbolic representations 
of numbers; Nakai et al., 2023) and whether such a representational 
relation changes with exposure to formal education (Nakai et al., 2023).

Critically, artificial intelligence research has shown that ANNs 
trained on large-scale datasets may exhibit levels of cognitive ability 
that appear relatively similar to those exhibited by humans (Fei et al., 
2022; Korteling et al., 2021). There have been concerns that ANNs 
require much larger amounts of input than human infants (Frank, 2023). 
Yet, recent studies have shown that an ANN trained with a small dataset 
of visual and language inputs from one child (Davidson et al., 2024; 
Vong et al., 2024) can successfully learn the word-object associations 
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and spatial relations of objects (such as “above” and “below”) that 
children learn in everyday life. Such studies indicate that ANNs are 
potentially useful models simulating the development of human cogni
tive abilities. However, a fundamental question is whether ANNs and 
human brains exhibit computational processes and developmental tra
jectories that are comparable. Therefore, there is little doubt that 
developmental neuroimaging research can contribute to progress in 
CCN, for at least two reasons. First, it may enable quantitative modeling 
of dynamic changes in brain activity patterns that underlie cognitive 
development. Second, it can provide valuable insights for building 
artificial intelligence based on mechanisms similar to those of human 
development and learning.

The goal of this review is to examine how CCN may be applied to 
developmental neuroimaging. We first outline so-called encoding models, 
one of the main methods of CCN, and describe how they can contribute 
to our understanding of neuro-cognitive development. We then present 
some of the recent attempts that have combined encoding models with 
developmental neuroimaging data. We point out the caveats and diffi
culties in applying encoding models to developmental data, and provide 
an overview of the technical advances that could contribute to the future 
development of this field.

2. Encoding versus decoding models

Encoding models are an important method within CCN (see Krie
geskorte and Douglas 2018 for the other approaches). In an encoding 
model analysis, brain activity is predicted by a weighted linear combi
nation of features extracted from experimental stimuli (Fig. 1A). In other 
words, encoding models use stimulus features as input and brain re
sponses as output. It is interesting to consider that the general linear 
model (GLM), adopted in the statistical parametric mapping approach 
(Friston et al., 1994), is a special case of an encoding model where 

stimulus features consist of categorical labels of some experimental 
conditions (i.e., event-related design). Although earlier studies have 
used hand-crafted features to build encoding models (Huth et al., 2012; 
Kay et al., 2008; Nishimoto et al., 2011), recent studies have developed 
encoding models based on latent features derived from various ANN 
models (Goldstein et al., 2022; Güçlü and van Gerven, 2015; Khosla 
et al., 2021; Nakai and Nishimoto, 2023a). Encoding models thus serve 
to link brain activity and artificial intelligence through a form of 
representational space and enable testing cognitive theories on this 
space (Kriegeskorte and Douglas, 2018).

In practice, encoding models often predict brain activity at each 
cortical voxel (i.e., voxel-wise encoding models) or surface vertex (i.e., 
vertex-wise encoding models) from a linear combination of multivariate 
features extracted from stimuli multiplied by weight coefficients 
(Fig. 2A). Experimental tasks are often passive presentations of natu
ralistic stimuli such as visual images (Güçlü and van Gerven, 2015; Kay 
et al., 2008; St-Yves et al., 2023), movies (Khosla et al., 2021; 
Koide-Majima et al., 2020; Nishimoto et al., 2011), speech (Goldstein 
et al., 2022; Huth et al., 2016; Nakai et al., 2021b), and music pieces (De 
Angelis et al., 2018; Nakai et al., 2021a). To avoid overfitting to training 
data, researchers often use some regularized regression algorithms to 
estimate model weights (e.g., ridge regression; Hoerl and Kennard, 
1970). Features extracted from the holdout test data stimuli are multi
plied by the model weights obtained during training to predict brain 
activity of the test data, and model performance (prediction accuracy) is 
quantified using correlation coefficients or coefficients of determination 
between predicted and actual brain activities (Schoppe et al., 2016). 
Nonparametric permutation testing is generally advised when testing for 
statistical significance in a cross-validation approach, because the re
sults from each cross-validation fold are not independent and the de
grees of freedom for parametric statistics are overestimated (Scheinost 
et al., 2019).

Encoding models are interpreted based on the concept of linearizing 
feature space (Naselaris et al., 2011), which assumes that the relation 
between brain activity and features is linear even though the relation 
between stimulus input and features can be nonlinear. This indicates 
that the interpretation of results from an encoding model is highly 
dependent on how the features are preprocessed. However, encoding 
models benefit from such preprocessing biases because feature pre
processing reflects researcher’s hypothesis about brain representations. 
Typically, researchers do not test every feature available. They selec
tively choose a few features to test a hypothesis about brain represen
tations. For example, Nakai and Nishimoto (2023a) showed that large 
language ANN features predicted brain activity of math problems better 
than semantic and visual features. This is consistent with the hypothesis 
that human subjects would solve math problems using language func
tions that rely on long-distance dependency (Matsumoto and Nakai, 
2023).

To some extent, encoding models are defined in opposition to 
decoding models, which use brain responses as input and stimulus fea
tures as output (Fig. 1B) (Kriegeskorte and Douglas, 2019; Naselaris 
et al., 2011). Since decoding models link features and responses in the 
opposite direction as encoding models, weight coefficients are assigned 
to brain activity instead of stimulus features. Multivoxel pattern classi
fication, for example, can be regarded as a subset of decoding models 
where the input data consists of activity patterns of multiple voxels but 
the output is discrete labels (such as stimulus categories or task condi
tions). In other words, decoding models can take continuous latent 
features as the output in its general form. For example, by returning 
latent representations of a decoding model to the ANN, it can generate 
visual images from brain activity (Takagi and Nishimoto, 2023). 
Decoding models are a promising approach in terms of real-world ap
plications such as brain-machine interfaces, but they are not optimal for 
investigating which brain regions represent target cognitive functions 
(with perhaps the exception of searchlight analysis; Kriegeskorte et al., 
2006) because the output of decoding models is stimulus features rather 

Fig. 1. Difference between encoding and decoding models. (A) Encoding 
models, including the general linear model (GLM) under the event-related 
design, use stimulus features as input and brain activity as output. (B) Decod
ing models, including multivariate pattern classification, use brain activity as 
input and stimulus features as output. W indicates model weights.
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than brain activity. Therefore, the application of CCN to developmental 
neuroimaging is more likely to involve encoding models, which are the 
focus of the present review.

3. Why are encoding models important in developmental 
research?

The use of encoding models can provide numerous benefits to 
developmental cognitive neuroscience. First, encoding models could 
provide a quantitative evaluation of cognitive components contributing 
to the brain activity of different subject populations and age groups 
(Fig. 2B). Prediction performance of different features can be compared 
by applying the encoding models to the test data not used during 
training. Features that exhibit better prediction performance are likely 
to be more similar to the information represented by the brain. For 
example, Nakai et al. (2021a) compared prediction accuracy of five 
different acoustic models and showed that a biologically plausible 
spectro-temporal modulation transfer function model was most accurate 
in predicting brain activity during a music listening task. de Heer et al. 
(2017) compared the prediction performance of spectral, phonetic, and 
semantic encoding models and found their distinct contributions from 
the primary auditory area to the lateral temporal cortex. In the case of 
constructing encoding models for multiple subjects, group-level differ
ence of prediction accuracies can be assessed using statistical tests. For 
example, Jessen et al. (2019) used t-tests to compare prediction accu
racies of auditory envelope and visual motion features for 
movie-viewing EEG data. Applying this methodology to developmental 
data would allow for the comparison of prediction accuracy at different 
age groups and for the investigation of dynamic changes in brain rep
resentations of multiple cognitive functions during development.

Second, encoding models are suitable for analyzing developmental 
neuroimaging data in naturalistic paradigms. Naturalistic paradigms, 

such as movies, speech, and music, have gained increasing attention in 
recent years as stimuli with more ecological validity compared to con
ventional experimental designs (Jääskeläinen et al., 2021; Tervaniemi, 
2023). Recent studies have reported better accuracy in estimating in
dividual differences with movie viewing fMRI data compared to 
resting-state fMRI data (Finn and Bandettini, 2021; Gal et al., 2022). 
Naturalistic paradigms do not impose complex instructions and can 
reduce head motion compared to resting state (Greene et al., 2018; 
Vanderwal et al., 2019), making it more suitable for experimentation 
with young children. One challenge in analyzing naturalistic stimuli, 
however, is their complexity. Indeed, they cannot be decomposed and 
modeled using discrete categorical features as in the event-related 
design. Encoding models are effective for analyzing naturalistic stim
uli based on latent features. For example, Nishimoto et al., (2011)
constructed encoding models using latent visual features extracted 
through various spatiotemporal filters to predict brain activity of three 
subjects watching movie stimuli. In Huth et al., (2016), brain activity of 
seven subjects listening to story stimuli was modeled using latent se
mantic features based on word co-occurrence statistics. Since a variety 
of features can be extracted from the same stimuli, encoding models can 
expand the possibilities for analyzing developmental data under the 
naturalistic paradigm.

Third, encoding models can incorporate latent features from ANNs 
and allow for comparisons in the development of artificial and biological 
neural networks. ANN consists of multiple layers of neuronal units, 
where the weighted sum of units in one layer is used as input for the next 
layer after a nonlinear transformation. By using experimental stimuli as 
input and extracting the output of the intermediate layers as vector 
embeddings, these vectors can be used as latent features of encoding 
models. For example, Güçlü and van Gerven (2015) showed that 
encoding models based on latent features of ANNs (trained with visual 
object categorization) predicted brain responses in the human visual 

Fig. 2. Pipeline of encoding model analysis. (A) A feature matrix is obtained by extracting features from experimental stimuli. Naturalistic stimuli (such as movies) 
and artificial neural networks can be used in this step. A brain response matrix is prepared for each subject (under the small-N design). An encoding model is (in most 
cases) trained using regularized linear regression between the feature and brain response matrices. The resultant weight matrix is further used in the model testing 
and visualization steps. Model performance is evaluated by predicting brain responses of holdout test data. (B) Prediction accuracy can be compared across different 
models (Model A to C) and different ages (e.g., Age 1 and Age 2). Note that brain activity may be measured at different ages within the same individual (i.e., in 
longitudinal designs) or between individuals (i.e., in cross-sectional designs). (C) Brain representations of target features (indicated by orange dots) can be visualized 
on two-dimensional space for different age groups. Two feature clusters that appear at Age 2 are circled in yellow.
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cortex. Such correspondence was hierarchically organized; i.e., the early 
visual cortex corresponded to the shallower ANN layers. Assuming a 
linearization of feature space (Naselaris et al., 2011), this suggests that 
nonlinear transformations accumulated from the input stimuli to deeper 
layers led to a linear relation with brain activity at a certain layer. The 
results of Güçlü and van Gerven (2015) are thus consistent with the 
hierarchical organization of the human visual system (Grill-Spector and 
Malach, 2004) and may bridge the gap between ANNs and the human 
brain. Similar analyses can be performed on neuroimaging data of 
children at different stages of development. Recent studies constructed 
ANNs based on visual and verbal input similar to that of one child aged 
6–25 months (Davidson et al., 2024; Vong et al., 2024). Although these 
studies have primarily examined the output of ANNs, encoding models 
could extend their concepts to include comparisons between internal 
representation of ANNs and the developing brain. Encoding models 
could thus provide an interpretation of ANNs, which are sometimes 
called “black box”, in terms of their similarity to biological neural 
networks.

Fourth, weight coefficients of encoding models could be further 
analyzed to visualize the developmental trajectory of brain representa
tions (Fig. 2C). Dimensionality reduction techniques such as principal 
component analysis enable mapping brain representations, which 
sometimes have hundreds of dimensions, onto two- or three- 
dimensional space and facilitate intuitive interpretation. For example, 
Huth et al. (2016) used principal component analysis to the weight 
matrix obtained using fMRI data of a story listening task, and visualized 
how diverse semantic concepts are organized on the 2D maps generated 
by different principal components in each cortical voxel. Koide-Majima 
et al. (2020) visualized how representations of 25 emotion dimensions 
during movie viewing are modulated on the cortical surface. Even if 
encoding models may accurately predict developmental data, a common 
critique is that their internal structure may appear to be a black box. 
However, visualization techniques help interpret how brain represen
tations dynamically change with development. Brain representations 
that are similar to each other at a certain age may separate into two 
clusters at another age (Fig. 2C). We argue that such data-driven visu
alization could lead to new discoveries about developmental changes in 
brain representations and could help bridge the gap between prediction 
and explanation (Shmueli, 2010).

The above characteristics of the encoding model are likely to open up 
new research opportunities in developmental cognitive neuroscience. 
For example, encoding models make it possible to compare prediction 
accuracy of ANN-based encoding models across different age groups, or 
track these changes within individuals over time, testing whether neural 
processing becomes more similar to ANN models with development. 
Visualization coming from encoding models may also be useful to 
determine how different stimuli are represented across development. 
For example, it might be used to examine how different phonemes of 
native and non-native languages are represented across early childhood 
(Menn et al., 2023) or whether different types of arithmetic operations 
are represented differently across development (Istomina and Arsalidou, 
2024). Encoding models may also be useful to investigate neuro
developmental disorders. For instance, by applying encoding models to 
brain activity of dyslexic children while listening to natural speech, it 
may be possible to determine which of the phonological, syntactic, and 
semantic features have reduced prediction performance or altered rep
resentations compared to typically developing children. In sum, 
encoding models may allow researchers to go largely beyond conven
tional analyses (such as GLM), which may provide new insights into 
developmental research.

4. Previous encoding model research with developmental data

Not many studies have attempted to use encoding models in 
analyzing developmental neuroimaging data. By far, these models have 
been most frequently used with EEG and MEG data. In M/EEG analysis, 

encoding models are often called (multivariate) temporal response func
tion (TRF) models (Brodbeck et al., 2023; Crosse et al., 2016). TRF 
models predict brain activity by linear combinations of stimulus features 
multiplied by weight coefficients. Weight coefficients (i.e., TRFs) are 
often estimated using regularized linear regression with training sam
ples (but also see Brodbeck et al. 2023 for other possible approaches), 
and model performance is evaluated in holdout test samples. Using this 
approach to seven-month-old infants, Kalashnikova et al. (2018) trained 
a TRF model based on the speech envelope extracted from stimuli used 
during EEG experiments and showed different model weights between 
infant-directed speech and adult-directed speech in the left frontal areas. 
Jessen et al. (2019) constructed TRF models using EEG data from 
7-month-old children watching a 5-min movie, combined with auditory, 
motion, and luminance features. By comparing models trained for each 
subject and those trained across subjects, they showed that TRF model 
prediction can be generalized to other individuals. Di Liberto et al. 
(2023) further built TRF models with a longitudinal cohort of infants at 
4, 7, and 11 months of age. TRF models based on phonetic features 
showed an increase in the prediction accuracy of EEG signals during the 
first year of life, showing the effectiveness of this method in analyzing 
how pre-verbal infants learn phonetic information. Using cross-sectional 
EEG data from children aged 3 months to 4.5 years, Menn et al. (2023)
found that prediction performance by phonetic features increased with 
age, specifically when children were listening to speech in their native 
language. All of these TRF model studies adopted naturalistic stimuli 
combined with continuous features, which cannot be used in the con
ventional event-related design. Moreover, Di Liberto et al. (2023), as 
well as their previous approach using the same dataset (Attaheri et al., 
2022), is a unique example of how encoding models can contribute to 
revealing developmental dynamics of brain representations using lon
gitudinal data, demonstrating the potential utility of encoding model 
approach in developmental cognitive neuroimaging.

Compared to studies using M/EEG, much fewer studies have applied 
encoding models to developmental neuroimaging datasets. This is 
nevertheless the case of two studies. First, Kamps et al. (2022) predicted 
movie viewing fMRI data of children aged 3–12 years in the fusiform 
face area and parahippocampal place area using encoding models 
trained with ANN features developed in their previous study (Ratan 
Murty et al., 2021). Second, Im et al. (2024) trained voxel-wise encoding 
models using the same fMRI dataset but with visual and social-affective 
features. They found that, while visual features predicted similarly 
across different age groups, the prediction accuracy of social-affective 
features increased with age. These two studies provide examples of 
the contribution of encoding models to developmental neuroimaging in 
terms of comparing ANNs and brain representations and different 
developmental stages based on prediction accuracy.

Despite the equivalence between the TRF model applied to M/EEG 
data and the encoding model that may be applied to fMRI data, there are 
some analytical differences between these models. In fMRI encoding 
models, weight values obtained during model training are often further 
analyzed using visualization methods such as principal component 
analysis (Huth et al., 2016; Koide-Majima et al., 2020). This allows for 
examining how representations of features or task categories are 
modulated across the cortex. Such detailed visualization attempts are 
rarely performed in TRF modeling studies, though they can be done. For 
example, Di Liberto et al. (2021) used a visualization analysis based on 
the TRF model. Using EEG data from native Mandarian speakers with 
varied English proficiency (L2) and native English speakers (L1), this 
study mapped regression weights of phonetic features from both subject 
groups on the two-dimensional space obtained using multidimensional 
scaling. With increased proficiency, the representational distance of 
phonemes between L1 and L2 subjects became shorter. Another marked 
difference between encoding models and TRF models is the target 
cognitive domains. The majority of studies using M/EEG-based TRF 
models have focused on auditory or phonological stimuli (Di Liberto 
et al., 2023, 2021; Jessen et al., 2019; Kalashnikova et al., 2018). In 
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contrast, fMRI-based encoding and decoding models have been mainly 
developed for visual processing (Huth et al., 2012; Kay et al., 2008; 
Naselaris et al., 2009; Nishimoto et al., 2011) and later applied to 
auditory and language processing (de Heer et al., 2017; Huth et al., 
2016; Kell et al., 2018; Nakai et al., 2021b; Tang et al., 2023). In 
particular, it is worth highlighting that encoding models are increasingly 
being used to analyze complex cognitive functions such as mathematics 
(Nakai and Nishimoto, 2023a, 2023b). Application of TRF models to 
other cognitive functions would help to broaden the scope of develop
mental CCN research using M/EEG.

5. Challenges in applying encoding model analysis in 
developmental fMRI data

Many fMRI studies using encoding models (predominantly with 
adult subjects) are based on data collected with a small number of 
subjects but with a large number of samples per subject (small-N design) 
(Smith and Little, 2018) (Fig. 2). For example, Nakai and Nishimoto 
(2020) trained encoding models from six adult subjects who underwent 
three hours fMRI experiments (within-subject sample size/number of 
scans = 3748). A recent study has trained encoding models using 7 T 
fMRI data of eight adult subjects viewing 9000–10,000 natural images 
(three times each image; 22,000–30,000 trials in total; 30–40 h for each 
subject) (Allen et al., 2022; St-Yves et al., 2023). This sampling approach 
is taken because model prediction accuracy generally depends on the 
number of training samples. By comparing encoding models with 
different within-subject sample sizes, Antonello et al. (2023) revealed 
that prediction accuracy scales logarithmically with within-subject 
sample size. Matsuyama et al. (2023) replicated this finding in the vi
sual domain. Wen et al. (2018) reported that such an increasing trend 
does not stop even at 10 h of training samples, suggesting that at least 
10 h fMRI experiment may be needed for each subject. These studies 
suggest the importance of within-subject sample size in constructing 
encoding models.

Such a focus on within-subject sample size contrasts with conven
tional neuroimaging studies that have rather focused on across-subject 
sample size (i.e., the number of subjects), and relatively few studies 
have considered the impact of within-subject sample size (Chen et al., 
2022; Nee, 2019). Ever since the emergence of noninvasive neuro
imaging techniques, the standards for across-subject sample size have 
become progressively more stringent (Szucs and Ioannidis, 2020). 
Further, a recent study has demonstrated that measuring reliable 
brain-behavior association would require thousands of subjects (Marek 
et al., 2022), casting doubt on the majority of neuroimaging studies 
based on smaller across-subject sample size. On the other hand, re
searchers in CCN have discussed the advantages of collecting massive 
neuroimaging data for each individual (Hasson et al., 2020; Naselaris 
et al., 2021). Building comprehensive models of brain responses in 
natural environments requires broad sampling that fills the 
high-dimensional feature space as much as possible. Adding more sub
jects may increase noise, which hinders the goal of building such a 
model.

It should be noted, however, that individual variability of brain 
representations still contains rich information. This variability can be 
taken into account in encoding models. While several studies have 
attempted to enhance across-subject generalization in encoding model 
analysis (as discussed in the next section) (Güçlü and van Gerven, 2017; 
Wen et al., 2018), it is possible to quantitatively evaluate individual 
variability in brain representational space by comparing model weights 
across multiple subjects (Nakai et al., 2024). Such an analysis can reveal, 
for example, that brain representations of visual and language tasks are 
close for some subjects, while other subjects have close representations 
of auditory and language tasks. This approach, when combined with 
developmental data, may further reveal differences in how brain rep
resentations change from person to person. However, considering the 
limited experimental cost, there is a trade-off between within-subject 

sample size and between-subject sample size (Naselaris et al., 2021). 
Extensive sampling of a small number of subjects can be viewed as a 
preliminary step to future attempts to make inferences about individual 
differences.

Despite the growing interest in within-subject sample size, con
ducting long testing with children is challenging in neuroimaging 
research. Children often drop out due to fatigue and boredom. In the 
case of MRI, fear of noise and confined MRI equipment is also a major 
drop-out factor. Finally, developmental fMRI data often suffer from a 
greater amount of head motion than adult data, which increases the risk 
of data loss. Not surprisingly, the effect of head motion depends on the 
subject’s age. For example, younger children (5–10 years) display larger 
head motion than older children (11–15 years) during a movie-watching 
task (Greene et al., 2018). The risk of such withdrawal and data loss 
increases with the experimental duration, resulting in a smaller 
within-subject sample size compared to adult subjects. For example, in 
Nakai et al. (2023) testing task-fMRI with 5-year-old children, the 
within-subject sample size was n = 156. In the public dataset of 
movie-viewing fMRI experiment with 3–12 year-old children in 
Richardson et al. (2018), the within-subject sample size was n = 168. 
The two previous fMRI encoding models with developmental data (Im 
et al., 2024; Kamps et al., 2022) are based on this dataset. Compared to 
the sample size required for constructing encoding models for adult 
subjects, those with children are an order of magnitude smaller.

Another possible obstacle for developmental encoding models is the 
relative lack of task-based neuroimaging data compared to the resting 
state data. Encoding models are generally built upon task-based neu
roimaging data because they aim to predict brain activity from features 
extracted from experimental stimuli. This analysis cannot be performed 
on structural MRI or resting-state fMRI data, both of which are widely 
used in neuroimaging studies with young children (Vijayakumar et al., 
2018; Zhang et al., 2019). Clearly, acquiring task-based data is possible 
in children, but it is more challenging in children than in adults. This is 
because of a number of factors, including difficulty in providing complex 
instructions to children, fatigability, or the longer time required to 
respond to trials than adults (resulting in fewer available trials) (Kail, 
1991).

Note that the above argument is mainly concerned with fMRI-based 
encoding models and does not apply to the EEG-based TRF models. TRF 
model studies do not fall under the small-subject design and generally 
perform statistical testing in a cross-subject manner. For example, Jessen 
et al. (2019) compared children and adults’ response functions at each 
sampling point using t-test. Di Liberto et al. (2023) tested group-level 
differences in prediction accuracy across different ages using repeated 
measures analysis of variance. Conversely, it remains unclear how 
accurately EEG data can be modeled for each individual. Such questions 
may be answered by using a recent massive individual EEG dataset 
(Gifford et al., 2022).

6. Possible solution and future implications

In the previous section, we argued that the small within-subject 
sample size and the relative lack of task-based fMRI are two major 
challenges in performing encoding model analysis on developmental 
CCN. Here we propose potential solutions to those issues.

First, the issue of small within-subject sample size can be overcome 
by concatenating data from different subjects, and encoding models can 
be trained based on the aggregated samples. When training such 
encoding models, cross-validation is performed in a cross-subject 
manner, unlike the single subject analysis where cross-validation is 
across trials or runs. Without any preprocessing, this may cause a 
reduction of prediction accuracy due to functional variability across 
subjects. To address this issue, researchers have developed the hyper
alignment (functional alignment) technique (Haxby et al., 2020). 
Hyperalignment is a method that transforms the multivoxel activity 
patterns (within a target region-of-interest) of different individuals into 
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a reference subject’s space by using Procrustes transformation (Goodall, 
1991). The Procrustes transformation minimizes the distance between 
two given matrices (where rows correspond to stimuli or trials, and 
columns correspond to voxels or vertices) with a rigid transformation 
(consisting of rotation, reflection, scaling, and translation), enabling 
diverse brain activity patterns of multiple subjects to be aligned into a 
similar pattern. Using this technique, Haxby et al. (2011) reported a 
performance increase in between-subject object classification using 
fMRI data in the ventral temporal cortex compared to anatomical 
alignment. Guntupalli et al. (2016) extended this approach to search
light spheres to enable a fine-grained transformation covering the whole 
cortex. Furthermore, Van Uden et al. (2018) trained encoding models on 
movie-viewing fMRI data and found that cross-subject prediction per
formance increased after the searchlight hyperalignment. Other recent 
studies have adopted different approaches to construct generalizable 
encoding models. For example, Nastase et al. (2020) transformed in
dividuals’ response time series into shared feature space via functional 
connectivity and trained a semantic encoding model with the trans
formed time series. Gu et al. (2022) combined predicted responses of 
multiple subjects to further construct an ensemble encoding model 
predicting new subject’s data. These studies indicate the potential of 
incorporating multi-subject activity data to build more generalizable 
encoding models.

Second, the challenge of acquiring task-based neuroimaging data in 
pediatric populations could be overcome by the use of naturalistic par
adigms. One promising analysis of naturalistic data is inter-subject 
correlation, which analyses how temporal activity patterns synchro
nize across different subjects. In inter-subject correlation analysis, cor
relations between time series of brain activity of different subjects 
evoked by the same stimulus (e.g., a movie) are calculated across all 
combinations of subject pairs (Nastase et al., 2019). For example, 
Amalric and Cantlon, (2023) used this method to analyze movie viewing 
task-fMRI data with children. Although the inter-subject correlation is a 
useful model-free method, it cannot decompose the original complex 
stimuli into cognitive components (visual, auditory, semantic, mathe
matics, etc.) and leaves it unclear how brain representations of these 
different components dynamically change during the experiment. 
Encoding models can address this issue by decomposing naturalistic 
stimuli into latent features with hundreds to thousands of dimensions 
and compare their prediction performance.

Furthermore, open data resources would accelerate developmental 
CCN research. In addition to limited types of task fMRI data published in 
Adolescent Brain Cognitive Development (ABCD) study (Casey et al., 
2018) or in UK Biobank (Littlejohns et al., 2020), researchers have 
published a series of open task-fMRI datasets of school children in the 
domain of reading, arithmetic, and reasoning (Lytle et al., 2020, 2019; 
Suárez-Pellicioni et al., 2019; Wang et al., 2022). Healthy Brain Network 
(Alexander et al., 2017) also provides naturalistic movie viewing 
task-fMRI data from a broad range of age groups (5- to 21-year-olds). 
The growth of public repositories for sharing data, such as OpenNeuro 
(Markiewicz et al., 2021), would provide opportunities for machine 
learning experts who do not have neuroimaging equipment but are 
interested in carrying out state-of-the-art analyses using developmental 
neuroimaging data. For example, two encoding model studies (Im et al., 
2024; Kamps et al., 2022) were based on the publicly available dataset 
(https://openneuro.org/datasets/ds000228/versions/1.1.1). The avail
ability of larger-scale data would lead to more accurate model building.

There is still room for improvement in the methodology of encoding 
models in developmental cognitive neuroscience. For example, when it 
comes to assessing individual growth over time, longitudinal data are 
the gold standard, as cross-sectional studies incur the risk of con
founding development with cohort effects. However, a majority of 
developmental neuroimaging studies are cross-sectional (Battista et al., 
2018; Fair et al., 2021), and developmental trajectory of longitudinal 
and cross-sectional brain data do not always converge (Keresztes et al., 
2022; Nyberg et al., 2010). In this context, the study of Di Liberto et al. 

(2023) is instrumental as it shows how longitudinal data can be used to 
construct TRF models, so that developmental changes in prediction 
performance can be evaluated within individuals. Although in that study 
the authors have built their models independently at each age, it may be 
possible to go a step further and explicitly incorporate a developmental 
effect into the model (e.g., linear mixed effect models; Bernal-Rusiel 
et al., 2013). Such an approach would make it possible to estimate the 
impact of cohort effects on encoding models. The model training algo
rithm also has room for improvement. Although most previous encoding 
model studies used regularization algorithms, a recent study imple
mented a boosting algorithm that minimizes nonzero parameters 
(Brodbeck et al., 2023). These technological developments will help 
constructing increasingly accurate encoding models.

In the future, more widespread use of encoding models will facilitate 
comparisons between human brain development and artificial intelli
gence. This goes beyond mere human-machine comparisons to reveal 
how information on various cognitive functions is represented in the 
brain and how it dynamically changes with learning and development.

7. Conclusion

In conclusion, we discussed here the progress and challenges of the 
emerging field of developmental CCN, with a particular focus on 
encoding models. The developmental CCN will serve as a bridge be
tween developmental science, cognitive science, neuroscience, and 
artificial intelligence, and will be the target of collaborative research 
between researchers from these different disciplines. Although previous 
studies suffer from small within-subject sample sizes and lack of task 
neuroimaging data, these challenges could be addressed by using func
tional alignment techniques and naturalistic paradigms. Such method
ological advances would pave the way for computational modeling of 
neuro-cognitive development.
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Jérôme Prado: Writing – review & editing, Supervision, Funding 
acquisition. Charlotte Constant-Varlet: Writing – review & editing. 
Tomoya Nakai: Writing – original draft, Visualization, Investigation, 
Conceptualization.

Declaration of Competing Interest

The authors declare no competing interests.

Acknowledgments

We thank MEXT/JSPS KAKENHI (JP24H02172 and JP24H01559), 
JST FOREST Program (JPMJFR231V), and H2020 Marie Skłodowska- 
Curie Actions (grant number 101023033) for T.N., Fondation de France 
(00123415 / WB-2021–38649), Fédération pour la Recherche sur le 
Cerveau (AP-FRC-2022), and Agence Nationale de la Recherche (ANR- 
23-CE28-0002–01) for J.P. for partial financial support of this study. The 
funders had no role in the study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

References

Alexander, L.M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Vega- 
Potler, N., Langer, N., Alexander, A., Kovacs, M., Litke, S., O’Hagan, B., Andersen, J., 
Bronstein, B., Bui, A., Bushey, M., Butler, H., Castagna, V., Camacho, N., Chan, E., 
Citera, D., Clucas, J., Cohen, S., Dufek, S., Eaves, M., Fradera, B., Gardner, J., Grant- 
Villegas, N., Green, G., Gregory, C., Hart, E., Harris, S., Horton, M., Kahn, D., 
Kabotyanski, K., Karmel, B., Kelly, S.P., Kleinman, K., Koo, B., Kramer, E., 
Lennon, E., Lord, C., Mantello, G., Margolis, A., Merikangas, K.R., Milham, J., 
Minniti, G., Neuhaus, R., Levine, A., Osman, Y., Parra, L.C., Pugh, K.R., 
Racanello, A., Restrepo, A., Saltzman, T., Septimus, B., Tobe, R., Waltz, R., 
Williams, A., Yeo, A., Castellanos, F.X., Klein, A., Paus, T., Leventhal, B.L., 
Craddock, R.C., Koplewicz, H.S., Milham, M.P., 2017. An open resource for 

T. Nakai et al.                                                                                                                                                                                                                                   Developmental Cognitive Neuroscience 70 (2024) 101470 

6 

https://openneuro.org/datasets/ds000228/versions/1.1.1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1
http://refhub.elsevier.com/S1878-9293(24)00131-2/sbref1


transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 
4, 170181.

Allen, E.J., St-Yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T., Nau, M., 
Caron, B., Pestilli, F., Charest, I., Hutchinson, J.B., Naselaris, T., Kay, K., 2022. 
A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial 
intelligence. Nat. Neurosci. 25, 116–126.

Amalric, M., Cantlon, J.F., 2023. Entropy, complexity, and maturity in children’s neural 
responses to naturalistic video lessons. Cortex 163, 14–25.

Antonello, R., Vaidya, A., Huth, A.G., 2023. Scaling laws for language encoding models 
in fMRI. arXiv [cs.CL]..
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