
© 2024 Massachusetts Institute of Technology. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.	 1

Nakai, T., Tirou, C., & Prado, J. (2024). From brain to education through machine learning: Predicting  
literacy and numeracy skills from neuroimaging data. Imaging Neuroscience, Advance Publication.  
https://doi.org/10.1162/imag_a_00219

 1 

Front matters section 1 
 2 
Title 3 
From brain to education through machine learning: Predicting literacy and 4 
numeracy skills from neuroimaging data 5 
 6 
Authors 7 
Tomoya Nakai1,2*, Coumarane Tirou1, Jérôme Prado1* 8 
 9 
Affiliations 10 
1Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS 11 
UMR5292, University of Lyon, 69500 Bron, France. 12 
2Araya Inc., Tokyo, Japan 13 
*To whom correspondence may be addressed.  14 

Email: nakai.tomoya@neuro.mimoza.jp, jerome.prado@univ-lyon1.fr 15 

Keywords: education, development, neuroscience, machine learning, learning 16 
disability 17 

 18 

https://doi.org/10.1162/imag_a_00219


 2 

From brain to education through machine learning: 19 
Predicting literacy and numeracy skills from neuroimaging data 20 

 21 
Tomoya Nakai1,2*, Coumarane Tirou1, Jérôme Prado1* 22 
 23 
1Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS 24 
UMR5292, University of Lyon, 69500 Bron, France. 25 
2Araya Inc., Tokyo, Japan 26 
*To whom correspondence may be addressed.  27 

Email: nakai.tomoya@neuro.mimoza.jp, jerome.prado@univ-lyon1.fr 28 

Keywords: education, development, neuroscience, machine learning, learning 29 
disability 30 

 31 
Abstract 32 
The potential of using neural data to predict academic outcomes has always 33 
been at the heart of educational neuroscience, an emerging field at the 34 
crossroad of psychology, neuroscience and education sciences. Although this 35 
prospect has long been elusive, the exponential use of advanced techniques in 36 
machine learning in neuroimaging may change this state of affairs. Here we 37 
provide a review of neuroimaging studies that have used machine learning to 38 
predict literacy and numeracy outcomes in adults and children, both in the 39 
context of learning disability and typical performance. We notably review the 40 
cross-sectional and longitudinal designs used in such studies, and describe how 41 
they can be coupled with regression and classification approaches. Our review 42 
highlights the promise of these methods for predicting literacy and numeracy 43 
outcomes, as well as their difficulties. However, we also found a large variability 44 
in terms of algorithms and underlying brain circuits across studies, and a 45 
relative lack of studies investigating longitudinal prediction of outcomes in young 46 
children before the onset of formal education. We argue that the field needs a 47 
standardization of methods, as well as a greater use of accessible and portable 48 
neuroimaging methods that have more applicability potential than lab-based 49 
neuroimaging techniques. 50 
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Introduction 51 
The past few decades have seen a rapid increase in our understanding of how 52 
the brain changes over development and learning, leading a number of 53 
neuroscientists to consider implications of these findings for education. This has 54 
led to the emergence of the field of educational neuroscience (Ansari & Coch, 55 
2006; Goswami, 2004, 2006), defined in a recent review (Thomas et al., 2019) 56 
as “an interdisciplinary research field that seeks to translate research findings 57 
on neural mechanisms of learning to educational practice and policy”. However, 58 
this general endeavor has not been unchallenged. Critics have notably claimed 59 
that neuroscience findings are too remote from the classroom to be informative 60 
and to have practical implications for children or educational systems (Bruer, 61 
1997). Others have argued that behavioral measures are more practical to 62 
characterize children’s cognitive capacities than neuroimaging measures 63 
(Bowers, 2016). 64 
 In an early review, Gabrieli et al. (2015) argued otherwise and 65 
suggested that brain measures obtained through neuroimaging techniques may 66 
be useful for predicting future academic outcomes and therefore help design 67 
interventions, as well as for evaluating the success of interventions. A relatively 68 
limited number of studies were available at the time of Gabrieli et al.’s review. 69 
However, significant progress has since been made in both neuroimaging and 70 
machine learning techniques. The term “machine learning” refers here to a set 71 
of computational methods that involve the development of algorithms and 72 
statistical models relying on patterns and inference derived from data. These 73 
computational methods typically use past information to improve their 74 
performance or to make accurate predictions over time (Mohri et al., 2012). 75 
Because these technological advances are changing the landscape of what 76 
may be possible in terms of the prediction of outcomes from neural signals, we 77 
aimed here to provide an updated review of recent advances in neuroscience 78 
and machine learning that may have application to both education and the 79 
treatment of neurodevelopmental disorders. Though the present review 80 
primarily focuses on the methodological framework, challenges, and main 81 
findings from these studies, we will also end by discussing the potential 82 
practical applications of this line of research.  83 

The present review largely focuses on findings in the domains of literacy 84 
and numeracy skills (and associated disorders) for two reasons. First, literacy 85 
and numeracy skills are considered fundamental to modern science and 86 
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technologies, and difficulties in acquiring these abilities may negatively impact 87 
academic attainment and financial well-being (Estrada-Mejia et al., 2016). 88 
Predicting reading and mathematical difficulties in children has therefore critical 89 
societal relevance. Second, literacy and numeracy are probably the academic 90 
domains for which the most progress has been made in developmental 91 
cognitive neuroscience over the past decades. We will, however, also include in 92 
our review several studies that have focused on other cognitive factors relevant 93 
to education. Finally, we will highlight future directions for studies aiming to 94 
apply machine learning to neural data in order to predict and improve 95 
educational outcomes.  96 
 97 
Predicting educational outcomes from brain activity: methodological 98 
considerations 99 
Gabrieli et al. (2015) pointed out that the term “prediction” can have at least 100 
three different meanings in studies. In its weakest form, the term might be used 101 
to describe a correlation between two sets of variables obtained at the same 102 
time point. In a slightly stronger form, it can also be used to describe a 103 
correlation between two sets of variables obtained at different time points. In its 104 
strongest form, “prediction” may describe a model generalization to out-of-105 
sample individuals, which typically relies on machine learning. This third 106 
meaning is arguably the closest to the definition of a “prediction” in common 107 
language. Studies demonstrating an out-of-sample generalization have also the 108 
most practical relevance because they suggest that a model would be 109 
applicable to novel data that are not specific to a given sample.  110 

The present review exclusively focuses on the term “prediction” as 111 
describing generalization to out-of-sample individuals, and therefore only 112 
includes studies demonstrating such generalization. As a side note, not all 113 
neuroimaging studies using machine learning techniques are relevant to the 114 
question of individual differences in academic performance, learning, or 115 
development. For instance, studies may use machine learning to test 116 
differences in spatial distributions of neural activity across tasks (Nakai et al., 117 
2023). These studies are not included in the present review either.  118 

Broadly speaking, previous neuroimaging studies using machine learning 119 
to predict educational outcomes can be divided into two categories. The first 120 
category (Figure 1, top row) encompasses studies using a cross-sectional 121 
design, such that different participants are evaluated at one (T1) or several time 122 
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points (T1 and T2). The second category (Figure 1, bottom row) includes 123 
studies using a longitudinal design, such that the same participants are 124 
evaluated at different time points (T1 and T2). These time points can be 125 
separated by days, weeks or even years. Note that cross-sectional and 126 
longitudinal studies may use supervised learning to either predict a continuous 127 
distribution of achievement (e.g., reading, math) scores from brain activity or 128 
discrete categorical labels such as presence or absence of learning disability. 129 
While the former relies on regression analyses (Figure 1, left column), the latter 130 
involves classification analyses (Figure 1, right column) (Bishop, 2006).  131 

Note that the three typical meanings of “prediction” in Gabrieli et al. 132 
(2015) can be categorized along the dimensions of “in-sample correlation vs. 133 
out-of-sample prediction” and “cross-sectional vs. longitudinal”. That is, the first 134 
two meanings are similar in that they both focus on in-sample correlation but 135 
are different because one uses a cross-sectional design and the other a 136 
longitudinal design. The third meaning (out-of-sample prediction) can also be 137 
applied to both cross-sectional and longitudinal data (Figure 1). In both cases, 138 
machine learning models are trained with a subset of samples, and their 139 
generalizability is tested with left-out samples. 140 

Regression and classification analyses use different analytic strategies. 141 
For instance, regression analysis as it is applied to a cross-sectional design 142 
(Figure 1, upper left cell) relies on the generation of a predictive model based 143 
on the relation between brain and behavioral data across participants from the 144 
training set at T1. The trained model is then used to predict behavior from brain 145 
data in left-out participants, also at T1. Regression analysis as it is applied to a 146 
longitudinal design (Figure 1, bottom left cell) relies on the generation of a 147 
predictive model based on the relation between brain data at T1 and behavioral 148 
data at T2 across participants from the training set. The trained model is then 149 
used to predict behavior at T2 from brain data at T1 in left-out participants. 150 
Classification analysis as it is applied to a cross-sectional design (Figure 1, 151 
upper right cell) relies on an association between a discrete categorization of 152 
participants from the training set according to behavioral labels defined at T1 153 
and their brain data at T1. This trained model is then used to assign labels to 154 
left-out participants based on their specific brain data, also at T1. Classification 155 
analysis as it is applied to a longitudinal design (Figure 1, bottom right cell) 156 
relies on an association between a discrete categorization of participants from 157 
the training set according to behavioral labels defined at T2 (e.g., typically 158 
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developing or learning disabled) and their brain data at T1. This trained model is 159 
then used to assign labels to left-out participants based on their specific brain 160 
data at T1. The specific methodologies underlying these analyses are 161 
discussed in a later section (see Studies use a range of machine learning 162 
methods). The present study does not include data from human or animal 163 
subjects and does not require approval from the ethics committee or informed 164 
consent. 165 

 166 

 167 

Figure 1. Schematic chart outlining the methodology used in 168 
neuroimaging studies reviewed here. Studies can be categorized into 169 
following a cross-sectional or a longitudinal design (rows), as well as a 170 
regression or a classification approach (columns). T1, time point 1; T2, time 171 
point 2. Note that, although cross-sectional design can be applied to multiple 172 
time points, we only describe the case of T1 to avoid confusion with the 173 
longitudinal design. Furthermore, we also simplified the description of the 174 
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longitudinal design by excluding cases of using differences of behavioral data 175 
(T2 - T1) as explained variables. Labels #1 and #2 indicate discrete 176 
categorization of individuals (e.g., typically developing or learning disabled). 177 
ANN, artificial neural network; DA, discriminant analysis; kNN, k-nearest 178 
neighbors; NBC, naïve Bayes classifiers; RF, random forest; SVM, support 179 
vector machine; SVR, support vector regression. 180 
 181 

Can neuroimaging studies predict literacy skills? 182 
A number of cross-sectional (Table 1) and longitudinal (Table 2) neuroimaging 183 
studies have attempted to use brain data to predict literacy skills (see 184 
Supplementary Information for the selection criteria of articles and the 185 
methodology used to generate the tables). For example, using regression in a 186 
cross-sectional design, He et al. (2013) showed that gray matter (GM) structural 187 
MRI (sMRI) data from adult participants could predict various language abilities 188 
(phonological decoding, form-sound association, and naming speed) 189 
decomposed from a set of behavioral measures. Xu et al. (2015) further used 190 
fractional amplitude of low-frequency fluctuations (ALFF) in resting fMRI (rest-191 
fMRI) data to predict reading test scores (efficiency of mapping orthography to 192 
semantic) of adult participants. Subsequent studies have focused on large 193 
datasets of adult participants provided by the Human-Connectome Project 194 
(HCP) (Van Essen et al., 2013). These studies used either the Oral Reading 195 
Recognition Test and/or Picture Vocabulary Test combined with different types 196 
of brain data: sMRI (Cui et al., 2018; Kristanto et al., 2020), functional 197 
connectivity (FC) of rest-fMRI (Kristanto et al., 2020; Yuan et al., 2023), 198 
diffusion MRI (dMRI) (Kristanto et al., 2020), and task-fMRI (language, working 199 
memory, and motor tasks) (Tomasi & Volkow, 2020). Together, these studies 200 
show that it is possible to predict individual differences in literacy skills with 201 
different sources of neuroimaging data, indicating that such skills are related to 202 
brain data over multiple dimensions. 203 
 Other studies have attempted to use neuroimaging data to classify 204 
between participants with and without dyslexia, a specific learning difficulty in 205 
word recognition, word decoding, and spelling abilities, with otherwise normal 206 
intelligence (American Psychiatric Association et al., 2013). For example, 207 
Tamboer et al. (2016) classified adults with and without dyslexia using sMRI 208 
(GM) data. Cui et al. (2016) and Joshi et al. (2023) further showed that such 209 
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classification was not limited to adults based on dMRI and sMRI data, 210 
respectively. Using sMRI (GM) data, but with a larger sample size including 211 
children from three different countries (130 children with dyslexia and 106 212 
typically-developing children), Płoński et al. (2017) replicated successful 213 
dyslexia classification. Finally, some studies have reported successful 214 
classification between children with and without dyslexia based on task-215 
electroencephalography (EEG) with word comprehension (Zainuddin et al., 216 
2018) and auditory stimuli listening (Formoso et al., 2021), and resting 217 
magnetoencephalography (MEG) signals (Dimitriadis et al., 2018). Although 218 
many of the studies above rely on rest-fMRI or sMRI data, more recent studies 219 
have also used task-fMRI data. For example, Mascheretti et al. (2021) classified 220 
dyslexic from non-dyslexic children using a visual detection task, whereas 221 
Tomaz Da Silva et al. (2021) used a word-reading task. Finally, Zahia et al. 222 
(2020) used three different reading tasks to classify children with dyslexia, 223 
monocular vision (due to ocular motility disorders), and control groups. 224 
 Studies have also attempted to distinguish between different subtypes 225 
of language-related disorders and language proficiency levels. Bailey et al. 226 
(2016) were able to distinguish children with dyslexia from those with specific 227 
reading comprehension deficits (SRCD) based on their sMRI (GM) data. SRCD 228 
differs from dyslexia in that affected children have difficulty in reading 229 
comprehension despite adequate phonemic decoding (Landi & Ryherd, 2017). 230 
Cignetti et al. (2020) and Nemmi et al. (2023) classified between children with 231 
dyslexia and with developmental coordination disorder (DCD) using rest-fMRI 232 
and sMRI (GM and white matter [WM]) data. Zare et al. (2016) and Yu et al. 233 
(2022) classified whether children’s families had a history of dyslexia using rest-234 
EEG and rest-fMRI data, respectively. One study has also used functional near-235 
infrared spectroscopy (fNIRS) study to classify between higher and lower 236 
second language proficiency groups (Lei et al., 2020). Barranco-Gutiérrez 237 
(2020) classified between adults who are native English speakers and those 238 
who learned English as a second language. Zhang et al. (2023) classified 239 
second language (English) proficiency levels (high, moderate, low) of Chinese 240 
speakers and further predicted listening comprehension scores using fMRI with 241 
a story listening task. Mossbridge et al. (2013) found that good and poor 242 
readers were separable using EEG data during a sentence comprehension 243 
task.  244 
 245 
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Table 1. Cross-sectional prediction studies for literacy 246 
Study Target 

ability/groups 
Sample size Mean 

age/age 
range 

Data type Technique Cross-
validation 

Max prediction 
accuracy 

Brain areas Selection method of 
brain areas 

He et al. 
(2013) 

Phonological 
decoding, 
form-sound 
association, 
naming speed 

253 21.5 sMRI (GM) Linear SVR 10-fold CV Phonological 
decoding, r = 
0.26; form-sound 
association, r = 
0.23; naming 
speed, r = 0.24 

Phonological 
decoding, 4 
regions including L. 
SPL and 
precuneus; form-
sound association, 
9 regions in the 
temporal cortex 
and hippocampus; 
naming speed, 11 
regions in the 
frontal, temporal, 
and parietal 
cortices 

Searchlight 

Mossbrid
ge et al. 
(2013) 

Subjects with 
good or poor 
reading scores 

28 18-29 Task-EEG 
(sentence 
comprehensi
on) 

RF Repeated 
selection of 35% 
of subjects (1000 
times) 

88.3% Medial frontal 
channel 

Weight values 

Xu et al. 
(2015) 

Reading 
scores 

263 22.1 rest-fMRI 
(ALFF) 

Linear 
regression 

4-fold CV r = 0.24 Bilateral PreCG, 
STG 

Predetermined ROIs. 
Non-independent 

Bailey et 
al. 
(2016) 

Dyslexia, 
SRCD 

41 (14 
dyslexia, 11 
SRCD, 16 TD) 

Dyslexia, 
12.5; SRCD, 
11.5; TD, 
11.9 

sMRI (GM) Linear SVM LOOCV 92.5% (SRCD 
vs. TD) 

Large portions of 
the frontal, 
temporal, parietal, 
occipital cortices, 
subcortex and 
cerebellum  

Weight values 

Cui et al. 
(2016) 

Dyslexia 61 (28 
dyslexia, 33 
TD) 

Dyslexia, 
11.6; TD, 
11.8 

sMRI (WM), 
dMRI (FA, 
mean, axial, 
radial 
diffusivity) 

Linear SVM, 
Logistic 
regression 

LOOCV 83.6% (SVM) 43 (SVM) and 40 
(Logistic 
regression) 
connections across 
the brain 

CV within training 
data 

Tamboer 
et al. 
(2016) 

Dyslexia First sample: 
49 (22 
dyslexia, 27 
TD); second 
sample: 876 
(60 dyslexia, 
816 TD) 

First sample, 
dyslexia, 
20.7; TD, 
20.3; second 
sample, 
dyslexia, 
22.5; TD, 
22.9 

sMRI (GM) Linear SVM LOOCV First sample, 
80.0%; Second 
sample, 59.0% 

L. IPL, bilateral FG Predetermined ROIs. 
Independent 

Zare et 
al. 
(2016) 

Familial risk of 
dyslexia 

24 (12 with 
familial risk, 12 
without risk) 

0.5 rest-EEG 
(FC) 

SVM (linear 
and 3 
nonlinear 
kernels) 

LOOCV 79.2% (linear 
and cubic) 

Left frontal and 
bilateral parietal 
channels 

Predetermined 
channels. Non-
independent 
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et al. 
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TD) 
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(volume, 
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thickness, 
surface area, 
folding index, 
and mean 
curvature) 
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RF 
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repeated 10-fold 
CV (100 times) 
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precuneus 
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Cui et al. 
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Reading 
scores, 
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First sample, 
507; second 
sample, 372; 
third sample, 
67(25 dyslexia, 
42 TD) 

First sample, 
22-35; 
second 
sample, 22-
35; third 
sample, 11.0 
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0.43; second 
sample, r = 0.34; 
third sample, r = 
0.24 
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Weight values 

Dimitriadi
s et al. 
(2018) 

Dyslexia 52 (25 
dyslexia, 27 
TD) 

Dyslexia, 
12.2; TD, 
11.4 

rest-MEG kNN, SVM Repeated 5-fold 
CV (100 times) 

97.0% Parietal and 
temporal channels 

Correlation between 
weight values and 
behavioral scores 
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Zainuddi
n et al. 
(2018)  

Dyslexia 33 (17 poor 
dyslexia, 8 
capable 
dyslexia, 8 TD) 

7-12 task-EEG 
(word 
comprehensi
on) 

Nonlinear 
SVM 

10-fold CV 91.0% No specific 
information 

N.A. 

Barranco
-
Gutiérrez 
(2020) 

L2 speakers 
and natives 

19 L2 English 
speakers and 
25 natives 

L2 speakers, 
31.9; natives 
28.2 

dMRI ANN 75% for training, 
10% for 
validation, 15% 
for testing 

97.0% Corpus callosum Predetermined ROIs. 
Independent 

Cignetti 
et al. 
(2020) 

Dyslexia, DCD 136 (45 
dyslexia, 20 
DCD, 29 
comorbid, 42 
TD) 
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10.2; DCD, 
10.0; 
comorbid, 
10.2; TD, 
10.1 

rest-fMRI 
(FC) 

Linear SVM LOOCV 75.9% (comorbid 
vs. TD) 

Default mode, 
dorsal attention, 
ventral attention, 
frontoparietal 
networks 

Weight values 

Kristanto 
et al. 
(2020) 

Reading 
scores 

998 22-35 sMRI 
(thickness, 
myelination, 
sulcus 
depth), rest-
fMRI (FC), 
dMRI 
(connectivity 
strength) 

Linear 
regression 

2-fold CV with 
LOOCV in each 
fold 
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temporal, and 
parietal cortices 
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data 
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Second 
language 
proficiency 

40 native 
Japanese (20 
high- and 20 
low-
proficiency), 38 
native English 
speakers (19 
high- and 19 
low-
proficiency)  

Japanese, 
high, 28.1; 
low, 29.4; 
English, 
high, 29.3; 
low, 28.5 

task-fNIRS Linear SVM, 
kNN, Sparse 
logistic 
regression 

LOOCV 81.9% (English, 
SVM) 

L. MFG, L. PreCG, 
L. ITG, L. PostCG, 
L. AG, bilateral 
STG, bilateral MTG 

Sparse canonical 
correlation analysis 

Tomasi & 
Volkow 
(2020) 

Reading and 
vocabulary 
scores 

424 29.0 rest-fMRI 
(FC), task-
fMRI 
(language, 
working 
memory, and 
motor tasks, 
FC) 

Linear 
regression 

2-fold CV with 
LOOCV in each 
fold 

R = 0.33 Fronto-parietal and 
default mode 
networks 

CV within training 
data 

Zahia et 
al. 
(2020) 

Dyslexia 55 (19 
dyslexia, 17 
monocular 
vision, 19 TD) 

Dyslexia, 
10.5; 
monocular 
vision, 10.4; 
TD, 10.0 

task-fMRI 
(lexical 
decision, 
orthographic 
matching, 
semantic 
categorizatio
n) 

ANN (3D 
CNN) 

4-fold CV 72.3% Bilateral IFG, MTG, 
STG, precuneus, 
FG, L. AG, L. 
medial temporal 

Predetermined ROIs. 
Independent 

Formoso 
et al. 
(2021) 

Dyslexia 48 (16 
dyslexia, 32 
TD) 

Dyslexia, 
8.0; TD, 7.8 

task-EEG 
(auditory 
stimuli 
listening) 

NBC 5-fold CV 90.0% (Beta, 
16Hz) 

Alpha, beta, delta, 
theta, gamma 
bands 

N.A. 

Mascher
etti et al. 
(2021) 

Dyslexia 44 (22 
dyslexia, 22 
TD) 

Dyslexia, 
14.1; TD, 
13.2 

task-fMRI 
(visual 
detection) 

Multiple 
kernel 
learning 
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10-fold CV 65.9% 11 ROIs including 
R. SPL, L. IPL, R. 
IFG, and occipital 
cortex 

Weight values 

McNorga
n (2021) 

High-skilled 
and poor 
readers 

First sample, 
28 (14 high-
skilled and 14 
poor readers); 
second 
sample, 10 (5 
high-skilled 
and 5 poor 
readers)  

First sample, 
8-13; second 
sample, 8-14 

task-fMRI 
(rhyme 
judgment, 
multiplication
, FC) 

ANN (MLP) 10-fold CV, 3-
fold CV 

First sample, 
94.0%; second 
sample, 96.0% 
(of functional 
connectivity) 

115 ROIs across 
the brain 

Predetermined ROIs. 
Non-independent 
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Formoso 
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TD) 
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Multiple 
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McNorga
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High-skilled 
and poor 
readers 

First sample, 
28 (14 high-
skilled and 14 
poor readers); 
second 
sample, 10 (5 
high-skilled 
and 5 poor 
readers)  

First sample, 
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sample, 8-14 

task-fMRI 
(rhyme 
judgment, 
multiplication
, FC) 

ANN (MLP) 10-fold CV, 3-
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First sample, 
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(of functional 
connectivity) 

115 ROIs across 
the brain 
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Tomaz 
Da Silva 
et al. 
(2021) 

Dyslexia 32 (16 
dyslexia, 16 
TD) 

Dyslexia, 
9.6; TD, 8.4 

task-fMRI 
(word 
reading) 

four ANNs 
(grammar-
based 
genetic 
programming 
[GGP] CNN, 
GGP 3D 
CNN, LeNet-
5, LeNet-5 
3D), linear 
SVM 

80% for training, 
10% for 
validation, 10% 
for testing 

94.8% (GGP 2D 
CCN) 

Large portions of 
the frontal, parietal, 
temporal and 
occipital cortices 

Weight values 

Usman 
et al. 
(2021) 

Dyslexia Dyslexia, 91; 
TD, 57 

Dyslexia, 
11.4; TD, 19-
30 

sMRI (GM), 
task-fMRI 
(rhyming, 
spelling, 
semantic 
decision), 
rest-fMRI, 
dMRI 

ANN (two-
ways 
cascaded 
CNN, 
ResNet-50, 
Inception V3) 

Repeated 10-fold 
CV (10 times) 

94.7% 
(ResNet50) 

L. STG, L. OTG, 
lateral cerebellum 

Predetermined ROIs. 
Independent 

Yu et al. 
(2022) 

Familial risk of 
dyslexia 

98 (35 with 
familial risk, 63 
without risk) 

Risk, 8.9; 
without risk, 
8.3 

rest-fMRI 
(FC) 

Linear SVM LPOCV 55.0% L. FG Predetermined ROIs. 
Non-independent. 
Weight values 

Joshi et 
al. 
(2023) 

Dyslexia 192 (96 
dyslexia, 96 
TD) 

Dyslexia, 
9.9; TD, 9.8 

sMRI (GM, 
WM) 

ANN 
(autoencoder
), SVM, RF 

Repeated 
sampling (100 
times) with 80% 
for training, 20% 
for testing 

75.0% (ANN) L. IPL, R. 
orbitofrontal, L. 
STG 

Classification 
accuracy with image 
perturbation 

Nemmi 
et al. 
(2023) 

Dyslexia, DCD 136 (45 
dyslexia, 20 
DCD, 29 
comorbid, 42 
TD) 

Dyslexia, 
10.2; DCD, 
1.0; 
comorbid, 
10.2; TD, 
10.1 

sMRI (GM, 
WM), rest-
fMRI (ALFF, 
local and 
global 
correlation) 

RF, linear 
SVM 

Repeated 10-fold 
CV (10 times) 

Dyslexia, 79.0%; 
DCD, 58.0%; 
comorbid, 62.0% 
(SVM) 

12 ROIs including 
L. cerebellum, R. 
MFG, R. SFG, R. 
LOC, L. insula, R. 
putamen, R. insula, 
and R. STG 

Predetermined ROIs. 
Non-independent 

Yuan et 
al. 
(2023) 

Reading and 
vocabulary 
scores 

522 28.5 rest-fMRI 
(FC) 

Relevance 
vector 
regression 

LOOCV Reading test, r = 
0.25; vocabulary 
test, r = 0.29 

4 networks across 
frontal and 
temporal cortices 

Predetermined ROIs. 
Independent 

Zhang et 
al. 
(2023) 

Second 
language 
proficiency 

47 (15 low-, 16 
moderate-, 16 
high-
proficiency) 

22.7 task-fMRI 
(story 
listening) 

SVM, Ridge 
regression 

LOOCV 49.0%, r = 0.47 Large portions of 
the frontal, parietal, 
temporal and 
occipital cortices 

Predetermined ROIs. 
Non-independent 

DCD, developmental coordination disorder; SRCD, specific reading comprehension deficit; TD, 247 
typically-developing; dMRI, diffusion magnetic resonance imaging; fMRI, functional MRI; sMRI, 248 
structural MRI; EEG, electroencephalography; MEG, magnetoencephalography; fNIRS, 249 
functional near-infrared spectroscopy; GM, gray matter; WM, white matter; ALFF, amplitude of 250 
low-frequency fluctuations; FC, functional connectivity; LOOCV, leave-one-out cross-validation; 251 
LPOCV, leave-pair-out cross-validation; ROI, region-of-interest; AG, angular gyrus; FG, fusiform 252 
gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; LOC, 253 
lateral occipital cortex; MFG, middle frontal gyrus; MTG, middle temporal gyrus; PreCG, 254 
precentral gyrus; PostCG, postcentral gyrus; SFG, superior frontal gyrus; SMG, supramarginal 255 
gyrus; SPL, superior parietal lobule; STG, superior temporal gyrus. 256 
 257 

In comparison to the number of studies that have used cross-sectional 258 
designs to predict literacy outcomes, a much smaller number of studies have 259 
used longitudinal designs to make out-of-sample predictions of literacy 260 
outcomes (Table 2). A pioneering study by Hoeft et al. (2007) combined both 261 
task-fMRI (rhyme judgment) and sMRI (GM and WM) data as inputs of multiple 262 
linear regression models. The authors found that brain data could predict later 263 
reading scores at the end of the same year. Bach et al. (2013) combined task-264 
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EEG and task-fMRI data (word comprehension) to predict reading scores 265 
measured 2 years later. In Feng et al. (2021), subjects underwent grammar 266 
training of an artificial language. Their final learning outcomes were predicted 267 
from task-fMRI data during training in earlier sessions. Beyer et al. (2022) used 268 
sMRI data (GM, surface area, and local gyrification) in preschoolers to predict 269 
literacy ability 2 years later. This study is particularly interesting because 270 
children were tested before they were exposed to formal education. This finding 271 
lends support to the argument that neuroimaging measures may be used as a 272 
way to improve the early detection of learning difficulty, in order to prevent 273 
difficulties later on (Mascheretti et al., 2017).  274 

Some longitudinal neuroimaging studies have also attempted to use 275 
neural data to classify between children with and without dyslexia. For example, 276 
Hoeft et al. (2011) showed that a machine-learning classifier can distinguish 277 
whether certain dyslexic children will improve their reading skills or not 2.5 278 
years later using fractional anisotropy (FA) of dMRI and task-fMRI (rhyme 279 
judgment) data. Skeide et al. (2016) also reported successful classification of 280 
future dyslexia based on sMRI (GM) data in children before formal education. 281 
Finally, Yu et al. (2020) demonstrated classification of children with and without 282 
familial risk of dyslexia using task-fMRI data (phonological processing) before 283 
formal education. These reports suggest that prediction of language ability 284 
before formal education may be applicable to the early detection of risk of 285 
language deficits. In sum, both cross-sectional and longitudinal designs suggest 286 
that neuroimaging data may have the potential to predict literacy skills and 287 
classify language disorders. 288 
 289 

Table 2. Longitudinal prediction studies for literacy 290 
Study Target 

ability/grou
ps 

Sample size Mean 
age/age 
range 

Data type Technique Cross-
validation 

Max prediction 
accuracy 

Brain areas Selection 
method of brain 
areas 

Hoeft et 
al. 
(2007) 

Reading 
scores after 
one school 
year 

64 T1: 10.0, T2: 
10.6 

task-fMRI 
(rhyme 
judgment), 
sMRI (GM, 
WM) 

Multiple linear 
regression 

LOOCV Unclear R. FG, L. MTG, R. 
MFG, L. STG, L. IPL 

Predetermined 
ROIs. Non-
independent 

Hoeft et 
al. (2011) 

Improvement 
of reading 
scores in 
dyslexia after 
2.5 years 

25 (12 
dyslexia with 
gain, 13 
without gain) 

T1: with gain, 
14.5; without 
gain, 14.6; 
T2: with gain, 
17.0; without 
gain, 16.0 

task-fMRI 
(rhyme 
judgment), 
dMRI (FA) 

Linear SVM LOOCV 92.0% Whole brain, R. IFG, 
R. SLF 

Predetermined 
ROIs. 
Independent 

Bach et 
al. 
(2013) 

Reading 
scores after 
2 years 

19 T1: 6.4, T2: 
8.4 

task-EEG, 
task-fMRI 
(word 

DA LOOCV 94.1% L. FG, L. occipito-
temporal channels 

Predetermined 
ROIs. 
Independent 
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comprehensio
n) 

Skeide 
et al. 
(2016) 

Dyslexia 
after 1.7 
years and at 
the end of 
the first 
grade 

First sample: 
34 (17 
dyslexia, 17 
TD); second 
sample 20 
(10 dyslexia, 
10 TD) 

T1: First 
sample, 
dyslexia, 
10.4; TD, 
10.6; second 
sample, 
dyslexia, 5.6; 
TD, 5.8; T2: 
unclear 

sMRI (GM, 
WM) 

Linear SVM 10-fold CV First sample: 73.5%; 
second sample: 
75.0% 

L. FG Prediction 
accuracy, 
predetermined 
ROIs. Non-
independent 

Yu et al. 
(2020) 

Familial risk 
of dyslexia 

81 (35 with 
risk, 34 
without risk, 
12 dyslexia 
and with 
familial risk) 

T1: with risk, 
5.5; without 
risk, 5.4; 
dyslexia, 5.8; 
T2: with risk, 
8.7; without 
risk, 9.0; 
dyslexia, 8.3 

task-fMRI 
(phonological 
processing) 

Linear SVM 15-fold CV 68.3% R. IFG, L. AG Searchlight 

Feng et 
al. 
(2021) 

Learning 
outcomes 
after 7 days 
training in an 
artificial 
language 

33 T1/T2: 22.3 task-fMRI 
(vocabulary 
and grammar 
training) 

Least-squares 
SVR 

Repeated 10-
fold CV (10000 
times) 

r = 0.61 23 ROIs across 
frontoparietal, 
perisylvian, salience, 
and default mode 
networks 

Weight values 

Beyer et 
al. 
(2022) 

Literacy skill 
after 2 years 

42 T1: 5.6, T2: 
8.3 

sMRI (GM, 
surface area, 
local 
gyrification) 

Elastic net LOOCV, 
repeated 10-fold 
CV (50 times) 

r = 0.80 L. IFG, STG, MTG, 
insula, ITG, FG, 
SMG, AG 

Predetermined 
ROIs. 
Independent. 
Weight values 

SLF, superior longitudinal fasciculus. 291 
 292 
Can neuroimaging studies predict numeracy skills? 293 
As is the case for studies on literacy, neuroimaging studies that attempt to 294 
predict numeracy skills can be categorized as either cross-sectional (Table 3) 295 
or longitudinal (Table 4). Cross-sectional studies include for example Ullman & 296 
Klingberg (2017), who estimated math scores of 6- to 7-year-olds through a 297 
prediction model of brain age using dMRI (FA). Pina et al. (2022) predicted four 298 
types of math scores (math fluency, calculation, applied problems, quantitative 299 
concepts) using 100 radiomics features derived from sMRI data. 300 

Other cross-sectional studies have attempted to classify groups of 301 
participants with respect to their numeracy skills, for example those with and 302 
without dyscalculia. Dyscalculia is defined as a specific learning difficulty in 303 
processing numerical information, learning arithmetic facts, and performing 304 
calculations, with otherwise normal intelligence (American Psychiatric 305 
Association et al., 2013). For example, Rykhlevskaia et al. (2009), Jolles et al. 306 
(2016), and Dinkel et al. (2013) showed that children with and without 307 
dyscalculia could be classified using dMRI (number of pathways), rest-fMRI 308 
(FC), and task-fMRI data (dots comparison and calculation), respectively. 309 
Moreover, Mórocz et al. (2012) and Peters et al. (2018) showed that arithmetic 310 
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task-fMRI data can be used to classify both dyscalculic and dyslexic children. 311 
Torres-Ramos et al. (2020) also showed that task-EEG data (digits comparison) 312 
could be used to classify children according to three different categorical levels 313 
of math achievement.  314 

Several studies have focused on classifying other aspects of individual 315 
differences in numeracy skills. Shim et al. (2021) and Liu et al. (2022) reported 316 
classification of individuals based on their expertise in mathematics using rest-317 
fMRI (FC) and sMRI data, respectively. Ventura-Campos et al. (2022) classified 318 
individuals who make errors in variable selection (reversal error) when writing 319 
equations to given word problems using algebra task-fMRI data.  320 
 321 

Table 3. Cross-sectional prediction studies for numeracy 322 
Study Target 

ability/gro
ups 

Sample size Mean age/age 
range 

Data type Technique Cross-
validation 

Max prediction 
accuracy 

Brain areas Selection 
method of 
brain areas 

Rykhlevs
kaia et 
al. 
(2009) 

Dyscalculia 47 (23 
dyscalculia, 24 
TD) 

Dyscalculia, 8.8; 
TD, 8.9 
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of pathways) 
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of the brain 

Predetermined 
ROIs. 
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13 dyscalculia, 
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24.6 
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s, 23 non-
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mathematicians 
27.2 
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connection 
features) 

46 pairs of ROIs 
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task-fMRI data can be used to classify both dyscalculic and dyslexic children. 311 
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Liu et al. 
(2022) 

Math and 
non-math 
students 

123 (72 math, 
51 non-math) 

Unclear sMRI ANN (MLP and 
ResNet) 

5-fold CV 91.8% L. MFG Predetermined 
ROI. 
Independent 
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al. 
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Prediction 
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 324 

In contrast to what has been done in studies focusing on literacy, a 325 
greater number of studies have used a longitudinal design to predict numeracy 326 
skills (Table 4). In a seminal study relying on multivariate regression, Supekar 327 
et al. (2013) showed that sMRI (GM) and rest-fMRI (FC) data could predict 328 
improvements in math performance of 8-year-old children after 8 weeks of 329 
tutoring program consisting of conceptual instruction and speeded arithmetic 330 
fact retrieval. Evans et al. (2015) further showed that prediction of longitudinal 331 
math outcome is possible even 6 years later using sMRI (GM) and rest-fMRI 332 
data. Chang et al. (2022) also reported similar prediction of change in 333 
performance after 4 weeks of training using rest-fMRI (FC) data. Schwartz et al. 334 
(2020) used fMRI data during a transitive reasoning task to predict math 335 
calculation skills 1.5 years later. Ullman et al. (2015) showed that math and 336 
working memory scores could be predicted at ages 5 and 7 from neonatal dMRI 337 
(FA), but not from sMRI data. Therefore, studies show that numeracy skills may 338 
be predicted from brain activity associated with domain-general processing, 339 
consistent with the role of these processes in math learning (Raghubar et al., 340 
2010). 341 
 We found only one longitudinal neuroimaging study that focused on the 342 
classification of dyscalculia as is depicted in Figure 1. Kuhl et al. (2021) 343 
classified future dyscalculia at ages of 7-9 and typically-developing (TD) 344 
children based on dMRI and rest-fMRI data before formal education (at ages of 345 
3-6). Overall, similar to language abilities, studies show that neuroimaging data 346 
may have the potential to predict numeracy skills and classify their disorders. 347 
 Note that some longitudinal studies do not neatly fall into the categories 348 
described in Figure 1. For example, Qin et al. (2014) used differences between 349 
addition task-fMRI data from two time points (T1 and T2, 1.2 years later) to 350 
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predict improvements in the frequency of retrieval strategy for addition problem 351 
solving. Iuculano et al. (2015) showed that task-fMRI data (mental addition) can 352 
discriminate between children with and without dyscalculia before (but not after) 353 
8 weeks of a tutoring program involving conceptual instruction and speeded 354 
arithmetic fact retrieval training. Michels et al. (2018) also reported similar 355 
results based on 5 weeks of mental number line training. These studies 356 
represent different ways to combine machine learning with neuroimaging data 357 
to explain differences in numeracy skills. 358 
 359 
Table 4. Longitudinal prediction studies for numeracy 360 

Study Target 
ability/groups 

Sample 
size 

Mean 
age/age 
range 

Data type Technique Cross-
validation 

Max prediction 
accuracy 

Brain areas Selection method of 
brain areas 

Supekar 
et al. 
(2013) 

Improvements in 
math scores after 
8 weeks of 
training 

40 (24 with 
training, 16 
control) 

T1/T2: with 
training, 8.5; 
control, 9.0 

sMRI (GM), 
rest-fMRI 
(FC) 

Linear 
regression 

4-fold CV r = 0.45 R. hippocampus Predetermined ROIs. 
Independent 

Qin et 
al. 
(2014) 

Improvements in 
the frequency of 
retrieval-strategy 
use 1.2 years 
later 

28 T1: 8.3, T2: 
9.5 

task-fMRI 
(addition, 
FC) 

Linear 
regression 

4-fold CV r = 0.71 R. hippocampus, L. 
IPS, bilateral DLPFC 

Predetermined ROIs. 
Non-independent 

Evans 
et al. 
(2015) 

Math scores up 
to 6 years later 

43 T1: 8.7, T2: 
unclear 

rest-fMRI, 
sMRI (GM) 

Linear SVR 4-fold CV R2 = 0.44 L. FG, L. IPS, L. 
DLPFC, L. VLPFC, 
R. premotor cortex, 
R. cuneus  

Predetermined ROIs. 
Non-independent 

Iuculan
o et al. 
(2015) 

Dyscalculia after 
8 weeks of 
training 

30 (15 
dyscalculia, 
15 TD) 

T1/T2: 
Dyscalculia, 
8.7; TD, 8.5 

task-fMRI 
(addition) 

Linear SVM LOOCV Before training, 
83.3%; after 
training, 43.3%  

17 ROIs across 
frontal, parietal, 
temporal cortices, 
subcortex, and 
cerebellum 

Predetermined ROIs. 
Non-independent 

Ullman 
et al. 
(2015) 

Math and 
working memory 
scores after 5 
and 7 years 

272 (224 
preterm 
infants, 46 
control) 

T1: 40.3 
weeks 
(gestational 
age), T2: 
unclear 

sMRI 
(deformatio
n-based 
morphomet
ry), dMRI 
(FA) 

SVR LOOCV r = 0.36 at 5 years No specific 
information 

N.A. 

Michels 
et al. 
(2018) 

Dyscalculia after 
5 weeks training 

31 (15 
dyscalculia, 
16 TD) 

T1/T2: 9.5 task-fMRI 
(number 
order 
judgment) 

Unclear LOOCV Before training, 
86.4%; after 
training, 38.9%  

Unclear Predetermined ROIs. 
Non-independent 

Schwart
z et al. 
(2020) 

Math scores 1.5 
years later 

31 T1: 11.0, T2: 
12.6 

task-fMRI 
(reasoning) 

Kernel 
ridge 
regression 

LOOCV r = 0.39 R. IPS Predetermined ROIs. 
Non-independent 

Kuhl et 
al. 
(2021) 

Dyscalculia 30 (15 
dyscalculia, 
15 TD) 

T1: 
Dyscalculia, 
4.1; TD, 5.0; 
T2: 7-9 

rest-fMRI 
(ALFF, 
regional 
homogeneit
y, degree 
centrality), 
dMRI 
(streamline 
density) 

SVM 10-fold CV 86.7% R. IPS, R. DLPFC Searchlight 

Chang 
et al. 
(2022) 

Improvements in 
math scores after 
4 weeks of 
training 

52 (18 
dyscalculia, 
34 TD) 

T1/T2: 8.2 rest-fMRI 
(FC) 

Linear 
regression 

4-fold CV r = 0.33 Bilateral 
hippocampus, L. IPS 

Predetermined ROIs. 
Non-independent 

DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal cortex. 361 
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Can neuroimaging studies predict other skills relevant to academic 363 
achievement? 364 
In our review of studies above, we exclusively focused on studies that have 365 
examined literacy and numeracy skills. However, studies have also tested 366 
whether neuroimaging may predict other skills that are relevant to academic 367 
achievement. This is notably the case for vocal communication. For example, 368 
Abrams et al. (2016) used task-fMRI data from 10-year-olds listening to their 369 
mother’s voice to predict children’s communication scores. This is also the case 370 
for affective traits related to academic achievement, particularly numeracy skills. 371 
Young et al. (2012), for example, classified children with high and low math 372 
anxiety groups using task-fMRI (addition and subtraction). Chen et al. (2018) 373 
predicted individual differences in positive attitudes toward mathematics using 374 
right hippocampal activity during an addition task. Supekar et al. (2015) showed 375 
that activity changes in task-fMRI during addition task can predict changes in 376 
children’s math anxiety elicited by the same tutoring program. Finally, studies 377 
have attempted to use brain information to enhance the diagnosis of autism 378 
spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (Eslami et 379 
al., 2020; Nogay & Adeli, 2020), both of which can have impact on academic 380 
achievement (Arnold et al., 2020; Whitby & Mancil, 2009). Iuculano et al. (2014) 381 
notably used task-fMRI data (mental addition) to classify between ASD and TD 382 
children, suggesting a potential relation between the autistic trait and numeracy 383 
skills. While these developmental disorders are beyond the scope of this paper, 384 
they are important targets that cannot be ignored when considering the overall 385 
application of neuroimaging and machine learning to education.  386 

In addition to predicting literacy and numeracy skills, studies have also 387 
used brain imaging data to predict academic achievement more generally. For 388 
example, Wang et al. (2019) predicted students’ academic achievement at ages 389 
17-20 using sMRI data. Rasheed et al. (2021) predicted academic achievement 390 
(math and language test scores) of school children 4 years later using EEG 391 
data. Maglanoc et al. (2020) used a large sample of rest-fMRI data from the UK 392 
Biobank to predict educational attainment (based on the qualification variables, 393 
e.g., university degree). Studies have also investigated to what extent domain-394 
general skills contributing to academic achievement may be predicted using 395 
neuroimaging, including working memory, attention, and intelligence. For 396 
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example, Ullman et al. (2014) used sMRI and task-fMRI during a visuospatial 397 
working memory task to predict children’s working memory capacity 2 years 398 
later. There are also a large number of studies on the prediction of intelligence 399 
quotient scores from brain data (see Vieira et al. (2022) for a recent systematic 400 
review). For example, Greene et al. (2018) used both rest- and task-fMRI data 401 
with working memory and emotion identification tasks and found that task-fMRI 402 
models outperformed rest-fMRI model in predicting fluid intelligence scores. 403 
Therefore, a number of studies provide evidence that neuroimaging may predict 404 
general cognitive functioning, though this may not be as relevant as the 405 
prediction of specific academic skills such as reading or math for the purpose of 406 
identifying children with specific learning difficulties.   407 
 408 
Are there any specific brain circuits supporting prediction of academic 409 
outcomes? 410 
The studies reviewed here are important not only for practical reasons (i.e., to 411 
predict outcomes), but also for understanding the brain mechanisms supporting 412 
literacy and numeracy acquisition. Tables 1-4 report the main brain regions that 413 
have been identified in the specific studies. 414 

Some consistency can be seen across studies. For example, studies 415 
that have used MRI data to classify participants with and without dyslexia have 416 
often identified the left fusiform gyrus (FG) (Skeide et al., 2016; Tamboer et al., 417 
2016; Yu et al., 2022; Zahia et al., 2020), and the left superior temporal gyrus 418 
(STG) (Joshi et al., 2023; Płoński et al., 2017; Usman et al., 2021; Zahia et al., 419 
2020) as a potential neuromarker of the condition (see Table S1 for a list of 420 
studies only focusing on dyslexia). Studies that have used MRI data to classify 421 
participants with and without dyscalculia have instead often identified the right 422 
intraparietal sulcus (IPS) (Dinkel et al., 2013; Jolles et al., 2016; Kuhl et al., 423 
2021) (see Table S2 for a list of studies only focusing on dyscalculia). Although 424 
the number of studies remains too limited to quantify the consistency of these 425 
findings in a meta-analysis, these findings suggest that these specific brain 426 
circuits may be important for academic learning and be the target of future 427 
studies.  428 

However, as can also be seen from the tables, the brain systems 429 
identified between studies are wide and span the frontal, temporal, parietal, and 430 
occipital cortices, as well as subcortical areas. To some extent, this variability is 431 
expected given the different domains (e.g., literacy vs, numeracy), brain 432 
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measures (e.g., EEG, fMRI, sMRI) and tasks (e.g., addition vs. reasoning) 433 
explored between studies. Another factor contributing to such variance may be 434 
the use of different tests to estimate math and reading scores, and inconsistent 435 
definitions of conditions such as dyscalculia and dyslexia. For example, while 436 
some studies (e.g., Jolles et al., 2016) considered children with dyscalculia as 437 
having at or below the 25th percentile using standardized math test scores, 438 
others (e.g., Dinkel et al., 2013) have used more stringent criteria and focused 439 
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(Schwartz et al., 2020), and elastic net (Beyer et al., 2022). Simple or multiple 469 
linear regression requires a reduction of input data into a limited number of 470 
variables, which has been achieved by focusing on predetermined regions of 471 
interest (Hoeft et al., 2007; Supekar et al., 2013) or connectivity among them 472 
(Chang et al., 2022). However, inclusion of too many parameters can cause 473 
models to overfit the training data that contains non-negligible amount of noise, 474 
resulting in reduced generalizability to test data (Bishop, 2006). Elastic net and 475 
other regularized regression methods implement constraints on the model 476 
weight values to minimize overfitting to the training data and are appropriate for 477 
high-dimensional brain data. More recently, connectome-based predictive 478 
modeling (CPM) based on linear regression has been adopted for the analysis 479 
of brain-behavior association (Shen et al., 2017). For example, researchers 480 
have used this technique to analyze the HCP dataset, which includes a large 481 
number of subjects (Kristanto et al., 2020; Tomasi & Volkow, 2020).  482 

Although the use of different algorithms is in itself not problematic, it 483 
may become so when no justification is given for using one method instead of 484 
another. This is unfortunately often the case in the literature. This 485 
methodological flexibility increases the researcher degrees of freedom and 486 
makes it difficult to parse out exploratory from confirmatory findings, especially 487 
given an absence of preregistration across studies (Poldrack et al., 2017). 488 
There is also a need for more direct comparison between methodologies. For 489 
instance, Płoński et al. (2017) tested SVM, logistic regression, and RF for the 490 
same dataset, and reported that logistic regression showed the highest 491 
classification accuracy for dyslexia. Furthermore, Ventura-Campos et al. (2022) 492 
compared 13 different classification methods and reported that flexible 493 
discriminant analysis outperformed other methods. This type of systematic 494 
approach can ensure the robustness of results independent of the analysis 495 
method. However, this also requires researchers to systematically adopt the 496 
most robust methods, which might not always be the case. For example, a 497 
meta-analysis on machine learning application for disease prediction reported 498 
that SVM is the most frequently used algorithm in the literature, while RF shows 499 
superior accuracy (Uddin et al., 2019). By comparing six regression methods, 500 
Cui & Gong (2018) reported that least absolute shrinkage and selection 501 
operator (LASSO) regression were worse than the other algorithms when using 502 
FC of rest-fMRI data, while ordinary least-square regression was worse when 503 
using the sum of FC from each brain region, suggesting that performance of 504 
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different algorithms also depends on preprocessing methods of the same brain 505 
data. To our knowledge, it remains unclear which method is more effective for 506 
predicting academic achievement. 507 

Another source of variability in machine learning methods is the cross-508 
validation (CV) method employed (e.g., split-half, 10-folds, leave-one-out). CV is 509 
a widely-known method in machine learning to iteratively split some data into 510 
training and test samples, testing the model generalizability while minimizing 511 
selection bias. In the case of k-fold CV, 1/k of the original data are selected as 512 
test samples in each iteration and this procedure covers all original data with k 513 
iterations. In contrast, leave-one-out CV (LOOCV) uses each individual data 514 
(e.g., subject) as a test sample and iterates across all data. Among the studies 515 
included in the current review, LOOCV was the most widely adopted (23 516 
studies), while other studies used various types of k-fold CV methods (10-fold 517 
CV, 8 studies; 4-fold CV, 6 studies). Recent studies suggested that the 518 
repeated random splits method is more reliable than the leave-one-out method 519 
(Valente et al., 2021; Varoquaux et al., 2017). In this method, CV based on 520 
different random sample splitting is repeated for multiple times and averaged 521 
(e.g., 100 times); 10 studies adopted this technique (Beyer et al., 2022; Nemmi 522 
et al., 2023). Overall, there is wide variability in the machine-learning techniques 523 
used in neuroimaging studies, both in terms of algorithm selection and CV 524 
method. Both of these may have substantial influence on the model 525 
performance. This calls for a standardization in the field and future research 526 
would require careful consideration of their methodological choices. 527 
 528 

Limitations and future directions 529 
As reviewed here, an increasing number of neuroimaging studies suggest that 530 
brain data can be used to predict individual differences in both literacy and 531 
numeracy skills, as well as other skills relevant for academic achievement. 532 
However, several limitations are apparent in the literature.  533 

First, the majority of articles reviewed here have used sMRI or resting 534 
fMRI data (Tables 1-4). Although some studies have used task-fMRI data, their 535 
sample size was also generally smaller than sMRI and rest-fMRI studies. 536 
However, task-fMRI data can contribute to more accurate prediction of 537 
individual differences in academic achievement. For example, a recent study 538 
has reported superiority of movie-watching task-fMRI data in predicting various 539 
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cognitive and emotional traits compared to rest-fMRI data (Finn & Bandettini, 540 
2021; Greene et al., 2018). Combining multiple task-fMRI data may further 541 
increase prediction performance (Hammer et al., 2015). Moreover, task-fMRI 542 
can shed light on the heterogenous profiles of children with dyscalculia or 543 
dyslexia, who might have specific difficulties in some cognitive skills (such as 544 
phonological or visual attentional deficits in the case of dyslexia) by targeting 545 
appropriate ROIs (Jednoróg et al., 2014; van Ermingen-Marbach et al., 2013). 546 

Second, the literature is largely dominated by MRI data and relatively 547 
few studies have used EEG, MEG, or fNIRS in predictive studies. For instance, 548 
to the best of our knowledge, Dimitriadis et al. (2018) was the only example of 549 
using MEG data to predict language disorders. Lei et al. (2020) was also the 550 
only example of using fNIRS data to predict second language proficiency. The 551 
wide usage of MRI data might be due to its advantage in spatial resolution 552 
compared to the other methods. Considering their portability, however, EEG, 553 
fNIRS, and optically pumped magnetometers (OPM)-MEG (Boto et al., 2018; 554 
Brookes et al., 2022), as well as portable MRI (Liu et al., 2021), are interesting 555 
because they are more accessible for experimentation in schools and clinical 556 
practices than conventional MRI (Stangl et al., 2023). Given that early detection 557 
of potential learning disabilities is an important goal of several neuroimaging 558 
studies discussed here (Hoeft et al., 2007), efforts should be made to evaluate 559 
the potential of task-related portable neuroimaging data for predicting outcomes 560 
in children. 561 
 Third, most previous studies recruited subjects who were already 562 
exposed to formal education. However, predicting outcomes from neuroimaging 563 
data may be most interesting before potential difficulties occur at the behavioral 564 
level. That is, brain data might help detect a risk for learning disabilities before 565 
children begin formal education, which may help ensure that children receive 566 
appropriate educational support at the earliest stage. To our knowledge, four 567 
studies in the literacy domain (Beyer et al., 2022; Skeide et al., 2016; Yu et al., 568 
2020; Zare et al., 2016) and two studies in the numeracy domain (Kuhl et al., 569 
2021; Ullman et al., 2015) tested children before the onset of formal education. 570 
Most of these studies used either sMRI or rest-fMRI, and only one study used 571 
task-fMRI data (Yu et al., 2020). The relative lack of studies might reflect the 572 
inherent difficulty of pediatric MRI with young children. Again, this calls for the 573 
use of more child-friendly portable measurement techniques to inform about the 574 
prediction of future academic outcomes. 575 
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 Fourth, there is still room for the integration of sophisticated machine 576 
learning methods. Although linear regression and SVM are the two most widely 577 
used techniques in previous studies, some recent studies have adopted ANNs 578 
(Joshi et al., 2023; Tomaz Da Silva et al., 2021; Zahia et al., 2020). ANN is a 579 
computational model inspired by biological neural networks (BNNs). It consists 580 
of multiple layers of neuronal units, where the weighted sum of units in one 581 
layer is used as input for the next layer after a nonlinear transformation. One 582 
advantage of using ANNs is that one can compare commonality between ANNs 583 
and BNNs in terms of their representations across different layers/regions 584 
(Goldstein et al., 2022; Nakai & Nishimoto, 2023; Schrimpf et al., 2021). 585 
However, it remains unclear which ANN model is the more appropriate to 586 
explain developmental changes in brain representations and differences 587 
between those with and those without learning disabilities. Cross-validation 588 
techniques might also be improved. Although the large majority of studies use 589 
left-out sample predictions, this method is not the only method for brain-based 590 
classification or regression. Siegelman et al. (2021), for example, recently 591 
proposed a Bayesian latent-mixture model framework to classify between 592 
children with and without dyslexia. This framework does not need left-out 593 
samples because it constructs classification models by only using neuroimaging 594 
data without any categorical labels. In other words, it interprets the fit between 595 
the models’ classification and categorical labels as an estimate of its 596 
explanatory power. On the other hand, Astle et al. (2019) used unsupervised 597 
self-organization map to classify children into four groups (typically developing, 598 
broad cognitive deficits in both language and mathematics, working memory 599 
problems, and phonological difficulties). These alternative approaches can shed 600 
light on the search for more effective methods for predicting academic 601 
achievement. 602 

Fifth, a critical step for any neuroimaging studies using machine 603 
learning is feature selection. As is clear from our survey of the literature, many 604 
studies have relied on the selection of specific regions-of-interest (ROIs) as 605 
features to construct machine learning models (see Tables 1-4). A well-known 606 
issue with ROI analyses in neuroimaging studies is that the way they are 607 
selected might bias the outcome of the analyses. For instance, selecting ROIs 608 
based on data that are non-independent from the effect tested might lead to 609 
effect sizes that are inflated, an issue known as circular analyses (Kriegeskorte 610 
et al., 2009). Several neuroimaging studies (i.e., 15 out of 30 ROI-based 611 
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studies) reviewed here have selected ROIs based on the same dataset that was 612 
used for their machine learning analyses. This may cause inflation of decoding 613 
accuracy and result in a lack of generalizability of decoding models, even if 614 
ROIs are selected using univariate analyses and subsequently tested with 615 
multivariate analyses. The use of non-independent ROIs may further be 616 
inconsistent with the assumption of the left-out sample prediction because the 617 
test samples are already used for the feature selection during model training. 618 
Therefore, studies using non-independent ROIs could be considered as 619 
confirmatory, much like those that use in-sample correlations between two 620 
datasets (Dumontheil & Klingberg, 2012). Other feature selection methods may 621 
be used to circumvent this circularity issue. For example, some have interpreted 622 
contributing voxels based on nonzero decoding model weight values (Cui et al., 623 
2018; Hoeft et al., 2011) or based on the nested cross-validation (Cui et al., 624 
2016). Although caution is needed in interpreting weight values (Haufe et al., 625 
2014), both approaches can minimize bias of contributing brain regions. We 626 
believe that an interesting approach to avoid circularity issues in feature 627 
selection is searchlight decoding analysis (He et al., 2013; Kuhl et al., 2021). 628 
This whole-brain analysis constructs decoding model using voxels included in 629 
spheres centered around each cortical voxel. This makes it possible to identify 630 
brain regions in which multi-voxel patterns are sensitive to the difference 631 
between conditions or subject groups (Kriegeskorte et al., 2006).  632 

Sixth, because we attempted to provide a comprehensive review of the 633 
literature, several studies discussed here rely on relatively small sample sizes 634 
(see Tables 1-4). It is now acknowledged that small sample sizes can lead to a 635 
significant lack of reliability in neuroimaging data (Button et al., 2013). 636 
Therefore, conclusions from these studies must be considered with caution. 637 
Indeed, prediction accuracy can largely vary based on sample size. For 638 
example, Tamboer et al. (2016) classified dyslexia with 80.0% accuracy in a 639 
relatively small group of participants (N = 49) while they obtained 59.0% 640 
accuracy in a second group with a much larger sample size (N = 876). In the 641 
case of classification between learning disability (dyslexia or dyscalculia) and 642 
typically developing participants, no study with a large sample size (N > 100) 643 
achieved more than 80% accuracy (Tables S1-2). Usman et al. (2021) did 644 
report 94.7% accuracy with N = 148, but this study classified MRI image 645 
patches and did not directly classify original brain data. Overall, this suggests 646 
that a machine learning model with a classification accuracy of 80%, even if the 647 
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accuracy is significantly higher than the chance level, would lead to 648 
misdiagnosis in one subject out of five. This is relatively low for real-world 649 
applications, which should aim for highly accurate predictions more than 650 
statistical significance. 651 

Finally, as is the case generally in neuroimaging research, openly 652 
sharing data will be fundamental to improve models predicting academic 653 
outcomes from brain data. Building reliable predictive models requires a large 654 
amount of data (Varoquaux, 2018). Eight studies constructed predictive models 655 
of literacy skills (Table 1) using such open datasets. In addition to the 656 
neuroimaging data published in Adolescent Brain Cognitive Development 657 
(ABCD) study (Casey et al., 2018) or in UK Biobank (Littlejohns et al., 2020), 658 
researchers have published a series of open task-fMRI datasets of school 659 
children (Lytle et al., 2019, 2020; Suárez-Pellicioni et al., 2019; J. Wang et al., 660 
2022). Such large neuroimaging datasets will be beneficial for future 661 
developments in predicting academic performance using machine learning. In 662 
addition, acceleration of open data and codes would enable comparison of 663 
prediction accuracy across different studies and may reduce inconsistencies 664 
between studies. 665 
 666 
Are we getting closer to real-world applicability? 667 
In their review, Gabrieli et al. (2015) highlighted a number of challenges that 668 
would have to be met by neuroimaging studies predicting skills to have some 669 
real-world applicability, either in the classroom or in a clinical context. These 670 
notably included the reliability and representativeness of the findings, the added 671 
value compared to behavioral indicators, the economic cost, as well as the 672 
ethical and societal issues these methods may raise. We revisit here these 673 
challenges nine years after Gabrieli et al. (2015). 674 

The section above already fleshes out the critical limitations and 675 
challenges in the body of literature. On the one hand, the relative lack of 676 
consistency in methodology, experimental designs, and findings shows that 677 
there is much room for improvement for studies aiming to translate their findings 678 
to the real-world. On the other hand, the literature has significantly expanded 679 
over the past ten years. Although initial studies largely focused on literacy skills, 680 
investigation of academic skills has now largely expanded to numeracy. In 681 
comparison to earlier ones, studies have also now started to focus on longer-682 
term outcomes, sometimes over the course of several years (e.g., see Kuhl et 683 
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al. (2021) for long-term prediction of dyscalculia). This is critical if neuroimaging 684 
is to be thought about as a tool for enhancing the detection of future learning 685 
difficulties before they occur (Raschle et al., 2012). Finally, recent technical 686 
advances in machine learning, as well as the availability of large-scale 687 
neuroimaging data, might accelerate practical applications. For example, ANNs 688 
with a large number of layers were not available 25 years ago (Liu et al., 2022). 689 
The development of machine learning toolboxes such as scikit-learn (Abraham 690 
et al., 2014) has also reduced the barriers to attempting prediction analyses 691 
using neuroimaging data. 692 

For neuroimaging measures to be useful indicators for clinical practice 693 
or in the classroom, they would of course need to add some explanatory power 694 
to the prediction of future academic skills that can already be gathered from 695 
behavioral assessments alone. Some studies suggest that a combination of 696 
behavioral and brain-based measures may outperform either behavioral or 697 
neuroimaging measures alone when predicting academic skills (Beyer et al., 698 
2022; Hoeft et al., 2007), though most studies still lack a systematic comparison 699 
of prediction based on neuroimaging and behavior.  700 

Most studies reviewed here have used MRI to predict academic 701 
achievement. Some common criticisms of MRI include its cost and accessibility, 702 
as well as the fact that pediatric MRI is relatively challenging. As also pointed 703 
out by Gabrieli et al. (2015), it would be important for any financial analysis to 704 
account for current practices, which may be costly and less effective as they are 705 
often targeted at children who are already failing school. Even though MRI may 706 
not be used in the population at large, some studies do suggest that early MRI 707 
measures may be useful for some targeted population, for example for children 708 
of parents with learning disabilities. Indeed, a large body of evidence indicates 709 
that such children are at greater risk of developing the disability than their 710 
peers. Brain-based measures, together with behavioral assessments, may thus 711 
enhance the early detection of at-risk children (Beyer et al., 2022; Kuhl et al., 712 
2021). Another path for reducing the economic cost associated with collecting 713 
brain-based measures is a greater reliance on portable and wearable 714 
neuroimaging devices, such as wireless EEG or fNIRS. Critically, these 715 
methods have been increasingly used over the past ten years, with several 716 
studies showing their applicability for collecting brain data in uncontrolled 717 
environments such as classrooms (Davidesco et al., 2021). The field is now ripe 718 
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for testing how these techniques may be combined with machine learning to 719 
predict academic outcomes and how they compare to MRI measures. 720 

Finally, any use of neuroimaging measures to predict aspects of 721 
academic achievement would have to take into consideration ethical and 722 
societal issues. Though behavioral measures such as intelligence quotient (IQ) 723 
have long been used to predict academic achievement (Chamorro-Premuzic & 724 
Furnham, 2008), studies have shown that brain-based measures may have a 725 
special status in the public eye and be easily misinterpreted (Racine et al., 726 
2005). For example, there is evidence suggesting that people often perceive 727 
scientific claims as more credible when they include references to the brain or 728 
neuroscientific information (Weisberg et al., 2008), which suggests that people 729 
might give more weight to brain-based than behavioral indicators. Another 730 
critical aspect of the findings reviewed here is that they may raise ethical 731 
questions about whether they could be used to merely identify those with the 732 
highest likelihood of success instead of identifying individuals who are at-risk 733 
and would need help. Although a discussion of these ethical and societal issues 734 
is beyond the scope of the present review, it is clear that they need to be 735 
considered by researchers, clinicians, educators, parents, students and policy 736 
makers. 737 
 738 
Conclusion 739 
Nine years after the review of Gabrieli et al. (2015), studies using machine 740 
learning to predict educational achievement and learning disabilities from brain 741 
activity have grown exponentially, particularly in the domains of literacy and 742 
numeracy. However, we found in this updated review a considerable variation in 743 
algorithms and underlying brain circuits between studies. Studies also largely 744 
rely on relatively small samples and suboptimal models. We argue that the field 745 
needs a standardization of methods, as well as a greater use of accessible and 746 
portable neuroimaging methods that have more applicability potential than lab-747 
based neuroimaging techniques. 748 
 749 
Acknowledgments 750 
This study was funded by the Agence Nationale de la Recherche (ANR-14-751 
CE30–0002 and ANR-17-CE28–0014), the Fédération pour la Recherche sur le 752 
Cerveau (FRC2022) and the Fondation de France (00123415/WB-2021-38649) 753 
to J.P., and by H2020 Marie Skłodowska-Curie Actions (grant number 754 



 28 

101023033) and MEXT/JSPS KAKENHI (grant numbers 24H01559 and 755 
24H02172) to T.N. The funders had no role in study design, data collection and 756 
analysis, decision to publish, or preparation of the manuscript. 757 
 758 
Author Contributions: T.N. and J.P. conceptualized the study, T.N., C.T., and 759 
J.P. were involved in the article selection and data extraction, T.N. wrote a 760 
manuscript with critical revisions by J.P. and C.T. 761 

 762 
Competing interests 763 
The authors have declared that no competing interests exist. 764 
 765 
References 766 
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, 767 

J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning 768 
for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 14. 769 

Abrams, D. A., Chen, T., Odriozola, P., Cheng, K. M., Baker, A. E., 770 
Padmanabhan, A., Ryali, S., Kochalka, J., Feinstein, C., & Menon, V. 771 
(2016). Neural circuits underlying mother’s voice perception predict 772 
social communication abilities in children. Proceedings of the National 773 
Academy of Sciences of the United States of America, 113(22), 6295–774 
6300. 775 

American Psychiatric Association, D., Association, A. P., & Others. (2013). 776 
Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5, pp. 777 
61–64). American psychiatric association Washington, DC. 778 

Ansari, D., & Coch, D. (2006). Bridges over troubled waters: education and 779 
cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151. 780 

Arnold, L. E., Hodgkins, P., Kahle, J., Madhoo, M., & Kewley, G. (2020). Long-781 
Term Outcomes of ADHD: Academic Achievement and Performance. 782 
Journal of Attention Disorders, 24(1), 73–85. 783 

Astle, D. E., Bathelt, J., CALM Team, & Holmes, J. (2019). Remapping the 784 
cognitive and neural profiles of children who struggle at school. 785 
Developmental Science, 22(1), e12747. 786 

Bach, S., Richardson, U., Brandeis, D., Martin, E., & Brem, S. (2013). Print-787 
specific multimodal brain activation in kindergarten improves prediction of 788 
reading skills in second grade. NeuroImage, 82, 605–615. 789 



 28 

101023033) and MEXT/JSPS KAKENHI (grant numbers 24H01559 and 755 
24H02172) to T.N. The funders had no role in study design, data collection and 756 
analysis, decision to publish, or preparation of the manuscript. 757 
 758 
Author Contributions: T.N. and J.P. conceptualized the study, T.N., C.T., and 759 
J.P. were involved in the article selection and data extraction, T.N. wrote a 760 
manuscript with critical revisions by J.P. and C.T. 761 

 762 
Competing interests 763 
The authors have declared that no competing interests exist. 764 
 765 
References 766 
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, 767 

J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning 768 
for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 14. 769 

Abrams, D. A., Chen, T., Odriozola, P., Cheng, K. M., Baker, A. E., 770 
Padmanabhan, A., Ryali, S., Kochalka, J., Feinstein, C., & Menon, V. 771 
(2016). Neural circuits underlying mother’s voice perception predict 772 
social communication abilities in children. Proceedings of the National 773 
Academy of Sciences of the United States of America, 113(22), 6295–774 
6300. 775 

American Psychiatric Association, D., Association, A. P., & Others. (2013). 776 
Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5, pp. 777 
61–64). American psychiatric association Washington, DC. 778 

Ansari, D., & Coch, D. (2006). Bridges over troubled waters: education and 779 
cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151. 780 

Arnold, L. E., Hodgkins, P., Kahle, J., Madhoo, M., & Kewley, G. (2020). Long-781 
Term Outcomes of ADHD: Academic Achievement and Performance. 782 
Journal of Attention Disorders, 24(1), 73–85. 783 

Astle, D. E., Bathelt, J., CALM Team, & Holmes, J. (2019). Remapping the 784 
cognitive and neural profiles of children who struggle at school. 785 
Developmental Science, 22(1), e12747. 786 

Bach, S., Richardson, U., Brandeis, D., Martin, E., & Brem, S. (2013). Print-787 
specific multimodal brain activation in kindergarten improves prediction of 788 
reading skills in second grade. NeuroImage, 82, 605–615. 789 

 29 

Bailey, S., Hoeft, F., Aboud, K., & Cutting, L. (2016). Anomalous gray matter 790 
patterns in specific reading comprehension deficit are independent of 791 
dyslexia. Annals of Dyslexia, 66(3), 256–274. 792 

Barranco-Gutiérrez, A.-I. (2020). Machine Learning for Brain Images 793 
Classification of Two Language Speakers. Computational Intelligence 794 
and Neuroscience, 2020, 9045456. 795 

Beyer, M., Liebig, J., Sylvester, T., Braun, M., Heekeren, H. R., Froehlich, E., 796 
Jacobs, A. M., & Ziegler, J. C. (2022). Structural gray matter features and 797 
behavioral preliterate skills predict future literacy--A machine learning 798 
approach. Frontiers in Neuroscience, 16. https://refubium.fu-799 
berlin.de/handle/fub188/36573 800 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer New 801 
York. 802 

Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. 803 
D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, 804 
R., & Brookes, M. J. (2018). Moving magnetoencephalography towards 805 
real-world applications with a wearable system. Nature, 555(7698), 657–806 
661. 807 

Bowers, J. S. (2016). The practical and principled problems with educational 808 
neuroscience. Psychological Review, 123(5), 600–612. 809 

Brookes, M. J., Leggett, J., Rea, M., Hill, R. M., Holmes, N., Boto, E., & Bowtell, 810 
R. (2022). Magnetoencephalography with optically pumped 811 
magnetometers (OPM-MEG): the next generation of functional 812 
neuroimaging. Trends in Neurosciences, 45(8), 621–634. 813 

Bruer, J. T. (1997). Education and the Brain: A Bridge Too Far. Educational 814 
Researcher , 26(8), 4–16. 815 

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, 816 
E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size 817 
undermines the reliability of neuroscience. Nature Reviews. 818 
Neuroscience, 14(5), 365–376. 819 

Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, 820 
M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. 821 
A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. 822 
C., Dick, A. S., Bjork, J. M., Thomas, K. M., … ABCD Imaging Acquisition 823 
Workgroup. (2018). The Adolescent Brain Cognitive Development 824 



 30 

(ABCD) study: Imaging acquisition across 21 sites. Developmental 825 
Cognitive Neuroscience, 32, 43–54. 826 

Chamorro-Premuzic, T., & Furnham, A. (2008). Personality, intelligence and 827 
approaches to learning as predictors of academic performance. 828 
Personality and Individual Differences, 44(7), 1596–1603. 829 

Chang, H., Chen, L., Zhang, Y., Xie, Y., de Los Angeles, C., Adair, E., Zanitti, G., 830 
Wassermann, D., Rosenberg-Lee, M., & Menon, V. (2022). Foundational 831 
Number Sense Training Gains Are Predicted by Hippocampal–Parietal 832 
Circuits. The Journal of Neuroscience: The Official Journal of the Society 833 
for Neuroscience, 42(19), 4000–4015. 834 

Chen, L., Bae, S. R., Battista, C., Qin, S., Chen, T., Evans, T. M., & Menon, V. 835 
(2018). Positive Attitude Toward Math Supports Early Academic Success: 836 
Behavioral Evidence and Neurocognitive Mechanisms. Psychological 837 
Science, 29(3), 390–402. 838 

Cignetti, F., Nemmi, F., Vaugoyeau, M., Girard, N., Albaret, J.-M., Chaix, Y., 839 
Péran, P., & Assaiante, C. (2020). Intrinsic Cortico-Subcortical Functional 840 
Connectivity in Developmental Dyslexia and Developmental Coordination 841 
Disorder. Cerebral Cortex Communications, 1(1), tgaa011. 842 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 843 
20(3), 273–297. 844 

Cui, Z., & Gong, G. (2018). The effect of machine learning regression 845 
algorithms and sample size on individualized behavioral prediction with 846 
functional connectivity features. NeuroImage, 178, 622–637. 847 

Cui, Z., Su, M., Li, L., Shu, H., & Gong, G. (2018). Individualized Prediction of 848 
Reading Comprehension Ability Using Gray Matter Volume. Cerebral 849 
Cortex , 28(5), 1656–1672. 850 

Cui, Z., Xia, Z., Su, M., Shu, H., & Gong, G. (2016). Disrupted white matter 851 
connectivity underlying developmental dyslexia: A machine learning 852 
approach. Human Brain Mapping, 37(4), 1443–1458. 853 

Davidesco, I., Matuk, C., Bevilacqua, D., Poeppel, D., & Dikker, S. (2021). 854 
Neuroscience Research in the Classroom: Portable Brain Technologies 855 
in Education Research. Educational Researcher , 50(9), 649–656. 856 

Dimitriadis, S. I., Simos, P. G., Fletcher, J. Μ., & Papanicolaou, A. C. (2018). 857 
Aberrant resting-state functional brain networks in dyslexia: Symbolic 858 
mutual information analysis of neuromagnetic signals. International 859 



 30 

(ABCD) study: Imaging acquisition across 21 sites. Developmental 825 
Cognitive Neuroscience, 32, 43–54. 826 

Chamorro-Premuzic, T., & Furnham, A. (2008). Personality, intelligence and 827 
approaches to learning as predictors of academic performance. 828 
Personality and Individual Differences, 44(7), 1596–1603. 829 

Chang, H., Chen, L., Zhang, Y., Xie, Y., de Los Angeles, C., Adair, E., Zanitti, G., 830 
Wassermann, D., Rosenberg-Lee, M., & Menon, V. (2022). Foundational 831 
Number Sense Training Gains Are Predicted by Hippocampal–Parietal 832 
Circuits. The Journal of Neuroscience: The Official Journal of the Society 833 
for Neuroscience, 42(19), 4000–4015. 834 

Chen, L., Bae, S. R., Battista, C., Qin, S., Chen, T., Evans, T. M., & Menon, V. 835 
(2018). Positive Attitude Toward Math Supports Early Academic Success: 836 
Behavioral Evidence and Neurocognitive Mechanisms. Psychological 837 
Science, 29(3), 390–402. 838 

Cignetti, F., Nemmi, F., Vaugoyeau, M., Girard, N., Albaret, J.-M., Chaix, Y., 839 
Péran, P., & Assaiante, C. (2020). Intrinsic Cortico-Subcortical Functional 840 
Connectivity in Developmental Dyslexia and Developmental Coordination 841 
Disorder. Cerebral Cortex Communications, 1(1), tgaa011. 842 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 843 
20(3), 273–297. 844 

Cui, Z., & Gong, G. (2018). The effect of machine learning regression 845 
algorithms and sample size on individualized behavioral prediction with 846 
functional connectivity features. NeuroImage, 178, 622–637. 847 

Cui, Z., Su, M., Li, L., Shu, H., & Gong, G. (2018). Individualized Prediction of 848 
Reading Comprehension Ability Using Gray Matter Volume. Cerebral 849 
Cortex , 28(5), 1656–1672. 850 

Cui, Z., Xia, Z., Su, M., Shu, H., & Gong, G. (2016). Disrupted white matter 851 
connectivity underlying developmental dyslexia: A machine learning 852 
approach. Human Brain Mapping, 37(4), 1443–1458. 853 

Davidesco, I., Matuk, C., Bevilacqua, D., Poeppel, D., & Dikker, S. (2021). 854 
Neuroscience Research in the Classroom: Portable Brain Technologies 855 
in Education Research. Educational Researcher , 50(9), 649–656. 856 

Dimitriadis, S. I., Simos, P. G., Fletcher, J. Μ., & Papanicolaou, A. C. (2018). 857 
Aberrant resting-state functional brain networks in dyslexia: Symbolic 858 
mutual information analysis of neuromagnetic signals. International 859 

 31 

Journal of Psychophysiology: Official Journal of the International 860 
Organization of Psychophysiology, 126, 20–29. 861 

Dinkel, P. J., Willmes, K., Krinzinger, H., Konrad, K., & Koten, J. W., Jr. (2013). 862 
Diagnosing developmental dyscalculia on the basis of reliable single 863 
case FMRI methods: promises and limitations. PloS One, 8(12), e83722. 864 

Dumontheil, I., & Klingberg, T. (2012). Brain Activity during a Visuospatial 865 
Working Memory Task Predicts Arithmetical Performance 2 Years Later. 866 
Cerebral Cortex , 22(5), 1078–1085. 867 

Eslami, T., Almuqhim, F., Raiker, J. S., & Saeed, F. (2020). Machine Learning 868 
Methods for Diagnosing Autism Spectrum Disorder and Attention- 869 
Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A 870 
Survey. Frontiers in Neuroinformatics, 14, 575999. 871 

Estrada-Mejia, C., de Vries, M., & Zeelenberg, M. (2016). Numeracy and 872 
wealth. Journal Of Economic Psychology, 54, 53–63. 873 

Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., & 874 
Menon, V. (2015). Brain Structural Integrity and Intrinsic Functional 875 
Connectivity Forecast 6 Year Longitudinal Growth in Children’s 876 
Numerical Abilities. The Journal of Neuroscience: The Official Journal of 877 
the Society for Neuroscience, 35(33), 11743–11750. 878 

Feng, G., Ou, J., Gan, Z., Jia, X., Meng, D., Wang, S., & Wong, P. C. M. (2021). 879 
Neural Fingerprints Underlying Individual Language Learning Profiles. 880 
The Journal of Neuroscience: The Official Journal of the Society for 881 
Neuroscience, 41(35), 7372–7387. 882 

Finn, E. S., & Bandettini, P. A. (2021). Movie-watching outperforms rest for 883 
functional connectivity-based prediction of behavior. NeuroImage, 235, 884 
117963. 885 

Formoso, M. A., Ortiz, A., Martinez-Murcia, F. J., Gallego, N., & Luque, J. L. 886 
(2021). Detecting Phase-Synchrony Connectivity Anomalies in EEG 887 
Signals. Application to Dyslexia Diagnosis. Sensors , 21(21). 888 
https://doi.org/10.3390/s21217061 889 

Gabrieli, J. D. E., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a 890 
humanitarian and pragmatic contribution from human cognitive 891 
neuroscience. Neuron, 85(1), 11–26. 892 

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, 893 
S. A., Feder, A., Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, 894 
G., Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, W., Friedman, D., … 895 



 32 

Hasson, U. (2022). Shared computational principles for language 896 
processing in humans and deep language models. Nature Neuroscience, 897 
25(3), 369–380. 898 

Goswami, U. (2004). Neuroscience and education. The British Journal of 899 
Educational Psychology, 74(Pt 1), 1–14. 900 

Goswami, U. (2006). Neuroscience and education: from research to practice? 901 
Nature Reviews. Neuroscience, 7(5), 406–411. 902 

Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced 903 
brain state manipulation improves prediction of individual traits. Nature 904 
Communications, 9(1), 2807. 905 

Hammer, R., Cooke, G. E., Stein, M. A., & Booth, J. R. (2015). Functional 906 
neuroimaging of visuospatial working memory tasks enables accurate 907 
detection of attention deficit and hyperactivity disorder. NeuroImage. 908 
Clinical, 9, 244–252. 909 

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & 910 
Bießmann, F. (2014). On the interpretation of weight vectors of linear 911 
models in multivariate neuroimaging. NeuroImage, 87, 96–110. 912 

He, Q., Xue, G., Chen, C., Chen, C., Lu, Z.-L., & Dong, Q. (2013). Decoding the 913 
neuroanatomical basis of reading ability: a multivoxel morphometric 914 
study. The Journal of Neuroscience: The Official Journal of the Society 915 
for Neuroscience, 33(31), 12835–12843. 916 

Hebart, M. N., Görgen, K., & Haynes, J.-D. (2014). The Decoding Toolbox 917 
(TDT): a versatile software package for multivariate analyses of 918 
functional imaging data. Frontiers in Neuroinformatics, 8, 88. 919 

Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., 920 
Lyytinen, H., Whitfield-Gabrieli, S., Glover, G. H., Reiss, A. L., & Gabrieli, 921 
J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. 922 
Proceedings of the National Academy of Sciences of the United States of 923 
America, 108(1), 361–366. 924 

Hoeft, F., Ueno, T., Reiss, A. L., Meyler, A., Whitfield-Gabrieli, S., Glover, G. H., 925 
Keller, T. A., Kobayashi, N., Mazaika, P., Jo, B., Just, M. A., & Gabrieli, J. 926 
D. E. (2007). Prediction of children’s reading skills using behavioral, 927 
functional, and structural neuroimaging measures. Behavioral 928 
Neuroscience, 121(3), 602–613. 929 

Iuculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., 930 
Supekar, K., & Menon, V. (2015). Cognitive tutoring induces widespread 931 



 32 

Hasson, U. (2022). Shared computational principles for language 896 
processing in humans and deep language models. Nature Neuroscience, 897 
25(3), 369–380. 898 

Goswami, U. (2004). Neuroscience and education. The British Journal of 899 
Educational Psychology, 74(Pt 1), 1–14. 900 

Goswami, U. (2006). Neuroscience and education: from research to practice? 901 
Nature Reviews. Neuroscience, 7(5), 406–411. 902 

Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced 903 
brain state manipulation improves prediction of individual traits. Nature 904 
Communications, 9(1), 2807. 905 

Hammer, R., Cooke, G. E., Stein, M. A., & Booth, J. R. (2015). Functional 906 
neuroimaging of visuospatial working memory tasks enables accurate 907 
detection of attention deficit and hyperactivity disorder. NeuroImage. 908 
Clinical, 9, 244–252. 909 

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & 910 
Bießmann, F. (2014). On the interpretation of weight vectors of linear 911 
models in multivariate neuroimaging. NeuroImage, 87, 96–110. 912 

He, Q., Xue, G., Chen, C., Chen, C., Lu, Z.-L., & Dong, Q. (2013). Decoding the 913 
neuroanatomical basis of reading ability: a multivoxel morphometric 914 
study. The Journal of Neuroscience: The Official Journal of the Society 915 
for Neuroscience, 33(31), 12835–12843. 916 

Hebart, M. N., Görgen, K., & Haynes, J.-D. (2014). The Decoding Toolbox 917 
(TDT): a versatile software package for multivariate analyses of 918 
functional imaging data. Frontiers in Neuroinformatics, 8, 88. 919 

Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., 920 
Lyytinen, H., Whitfield-Gabrieli, S., Glover, G. H., Reiss, A. L., & Gabrieli, 921 
J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. 922 
Proceedings of the National Academy of Sciences of the United States of 923 
America, 108(1), 361–366. 924 

Hoeft, F., Ueno, T., Reiss, A. L., Meyler, A., Whitfield-Gabrieli, S., Glover, G. H., 925 
Keller, T. A., Kobayashi, N., Mazaika, P., Jo, B., Just, M. A., & Gabrieli, J. 926 
D. E. (2007). Prediction of children’s reading skills using behavioral, 927 
functional, and structural neuroimaging measures. Behavioral 928 
Neuroscience, 121(3), 602–613. 929 

Iuculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., 930 
Supekar, K., & Menon, V. (2015). Cognitive tutoring induces widespread 931 

 33 

neuroplasticity and remediates brain function in children with 932 
mathematical learning disabilities. Nature Communications, 6, 8453. 933 

Iuculano, T., Rosenberg-Lee, M., Supekar, K., Lynch, C. J., Khouzam, A., 934 
Phillips, J., Uddin, L. Q., & Menon, V. (2014). Brain organization 935 
underlying superior mathematical abilities in children with autism. 936 
Biological Psychiatry, 75(3), 223–230. 937 

Jednoróg, K., Gawron, N., Marchewka, A., Heim, S., & Grabowska, A. (2014). 938 
Cognitive subtypes of dyslexia are characterized by distinct patterns of 939 
grey matter volume. Brain Structure & Function, 219(5), 1697–1707. 940 

Jolles, D., Ashkenazi, S., Kochalka, J., Evans, T., Richardson, J., Rosenberg-941 
Lee, M., Zhao, H., Supekar, K., Chen, T., & Menon, V. (2016). Parietal 942 
hyper-connectivity, aberrant brain organization, and circuit-based 943 
biomarkers in children with mathematical disabilities. Developmental 944 
Science, 19(4), 613–631. 945 

Joshi, F., Wang, J. Z., Vaden, K. I., Jr, & Eckert, M. A. (2023). Deep learning 946 
classification of reading disability with regional brain volume features. 947 
NeuroImage, 273, 120075. 948 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based 949 
functional brain mapping. Proceedings of the National Academy of 950 
Sciences of the United States of America, 103(10), 3863–3868. 951 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). 952 
Circular analysis in systems neuroscience: the dangers of double 953 
dipping. Nature Neuroscience, 12(5), 535–540. 954 

Kristanto, D., Liu, M., Liu, X., Sommer, W., & Zhou, C. (2020). Predicting 955 
reading ability from brain anatomy and function: From areas to 956 
connections. NeuroImage, 218, 116966. 957 

Kuhl, U., Sobotta, S., Legascreen Consortium, & Skeide, M. A. (2021). 958 
Mathematical learning deficits originate in early childhood from atypical 959 
development of a frontoparietal brain network. PLoS Biology, 19(9), 960 
e3001407. 961 

Landi, N., & Ryherd, K. (2017). Understanding specific reading comprehension 962 
deficit: A review. Language and Linguistics Compass, 11(2). 963 
https://doi.org/10.1111/lnc3.12234 964 

Lei, M., Miyoshi, T., Dan, I., & Sato, H. (2020). Using a Data-Driven Approach to 965 
Estimate Second-Language Proficiency From Brain Activation: A 966 



 34 

Functional Near-Infrared Spectroscopy Study. Frontiers in Neuroscience, 967 
14, 694. 968 

Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N., Alfaro-969 
Almagro, F., Bell, J. D., Boultwood, C., Collins, R., Conroy, M. C., 970 
Crabtree, N., Doherty, N., Frangi, A. F., Harvey, N. C., Leeson, P., Miller, 971 
K. L., Neubauer, S., Petersen, S. E., Sellors, J., … Allen, N. E. (2020). 972 
The UK Biobank imaging enhancement of 100,000 participants: 973 
rationale, data collection, management and future directions. Nature 974 
Communications, 11(1), 2624. 975 

Liu, S., Zhang, Y., Peng, J., Wang, T., & Shang, X. (2022). Identifying Non-Math 976 
Students from Brain MRIs with an Ensemble Classifier Based on 977 
Subspace-Enhanced Contrastive Learning. Brain Sciences, 12(7). 978 
https://doi.org/10.3390/brainsci12070908 979 

Liu, Y., Leong, A. T. L., Zhao, Y., Xiao, L., Mak, H. K. F., Tsang, A. C. O., Lau, G. 980 
K. K., Leung, G. K. K., & Wu, E. X. (2021). A low-cost and shielding-free 981 
ultra-low-field brain MRI scanner. Nature Communications, 12(1), 7238. 982 

Lytle, M. N., McNorgan, C., & Booth, J. R. (2019). A longitudinal neuroimaging 983 
dataset on multisensory lexical processing in school-aged children. 984 
Scientific Data, 6(1), 329. 985 

Lytle, M. N., Prado, J., & Booth, J. R. (2020). A neuroimaging dataset of 986 
deductive reasoning in school-aged children. Data in Brief, 33, 106405. 987 

Maglanoc, L. A., Kaufmann, T., van der Meer, D., Marquand, A. F., Wolfers, T., 988 
Jonassen, R., Hilland, E., Andreassen, O. A., Landrø, N. I., & Westlye, L. 989 
T. (2020). Brain Connectome Mapping of Complex Human Traits and 990 
Their Polygenic Architecture Using Machine Learning. Biological 991 
Psychiatry, 87(8), 717–726. 992 

Mascheretti, S., De Luca, A., Trezzi, V., Peruzzo, D., Nordio, A., Marino, C., & 993 
Arrigoni, F. (2017). Neurogenetics of developmental dyslexia: from genes 994 
to behavior through brain neuroimaging and cognitive and sensorial 995 
mechanisms. Translational Psychiatry, 7(1), e987. 996 

Mascheretti, S, Peruzzo, D., Andreola, C., Villa, M., Ciceri, T., Trezzi, V., Marino, 997 
C., & Arrigoni, F. (2021). Selecting the Most Relevant Brain Regions to 998 
Classify Children with Developmental Dyslexia and Typical Readers by 999 
Using Complex Magnocellular Stimuli and Multiple Kernel Learning. 1000 
Brain Sciences, 11(6). https://doi.org/10.3390/brainsci11060722 1001 



 34 

Functional Near-Infrared Spectroscopy Study. Frontiers in Neuroscience, 967 
14, 694. 968 

Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N., Alfaro-969 
Almagro, F., Bell, J. D., Boultwood, C., Collins, R., Conroy, M. C., 970 
Crabtree, N., Doherty, N., Frangi, A. F., Harvey, N. C., Leeson, P., Miller, 971 
K. L., Neubauer, S., Petersen, S. E., Sellors, J., … Allen, N. E. (2020). 972 
The UK Biobank imaging enhancement of 100,000 participants: 973 
rationale, data collection, management and future directions. Nature 974 
Communications, 11(1), 2624. 975 

Liu, S., Zhang, Y., Peng, J., Wang, T., & Shang, X. (2022). Identifying Non-Math 976 
Students from Brain MRIs with an Ensemble Classifier Based on 977 
Subspace-Enhanced Contrastive Learning. Brain Sciences, 12(7). 978 
https://doi.org/10.3390/brainsci12070908 979 

Liu, Y., Leong, A. T. L., Zhao, Y., Xiao, L., Mak, H. K. F., Tsang, A. C. O., Lau, G. 980 
K. K., Leung, G. K. K., & Wu, E. X. (2021). A low-cost and shielding-free 981 
ultra-low-field brain MRI scanner. Nature Communications, 12(1), 7238. 982 

Lytle, M. N., McNorgan, C., & Booth, J. R. (2019). A longitudinal neuroimaging 983 
dataset on multisensory lexical processing in school-aged children. 984 
Scientific Data, 6(1), 329. 985 

Lytle, M. N., Prado, J., & Booth, J. R. (2020). A neuroimaging dataset of 986 
deductive reasoning in school-aged children. Data in Brief, 33, 106405. 987 

Maglanoc, L. A., Kaufmann, T., van der Meer, D., Marquand, A. F., Wolfers, T., 988 
Jonassen, R., Hilland, E., Andreassen, O. A., Landrø, N. I., & Westlye, L. 989 
T. (2020). Brain Connectome Mapping of Complex Human Traits and 990 
Their Polygenic Architecture Using Machine Learning. Biological 991 
Psychiatry, 87(8), 717–726. 992 

Mascheretti, S., De Luca, A., Trezzi, V., Peruzzo, D., Nordio, A., Marino, C., & 993 
Arrigoni, F. (2017). Neurogenetics of developmental dyslexia: from genes 994 
to behavior through brain neuroimaging and cognitive and sensorial 995 
mechanisms. Translational Psychiatry, 7(1), e987. 996 

Mascheretti, S, Peruzzo, D., Andreola, C., Villa, M., Ciceri, T., Trezzi, V., Marino, 997 
C., & Arrigoni, F. (2021). Selecting the Most Relevant Brain Regions to 998 
Classify Children with Developmental Dyslexia and Typical Readers by 999 
Using Complex Magnocellular Stimuli and Multiple Kernel Learning. 1000 
Brain Sciences, 11(6). https://doi.org/10.3390/brainsci11060722 1001 

 35 

McNorgan, C. (2021). The Connectivity Fingerprints of Highly-Skilled and 1002 
Disordered Reading Persist Across Cognitive Domains. Frontiers in 1003 
Computational Neuroscience, 15, 590093. 1004 

Michels, L., O’Gorman, R., & Kucian, K. (2018). Functional hyperconnectivity 1005 
vanishes in children with developmental dyscalculia after numerical 1006 
intervention. Developmental Cognitive Neuroscience, 30, 291–303. 1007 

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine 1008 
learning. MIT Press. 1009 

Mórocz, I. A., Janoos, F., van Gelderen, P., Manor, D., Karni, A., Breznitz, Z., 1010 
von Aster, M., Kushnir, T., & Shalev, R. (2012). Time-Resolved and 1011 
Spatio-Temporal Analysis of Complex Cognitive Processes and their 1012 
Role in Disorders like Developmental Dyscalculia. International Journal 1013 
of Imaging Systems and Technology, 22(1), 81–96. 1014 

Mossbridge, J. A., Grabowecky, M., Paller, K. A., & Suzuki, S. (2013). Neural 1015 
activity tied to reading predicts individual differences in extended-text 1016 
comprehension. Frontiers in Human Neuroscience, 7, 655. 1017 

Nakai, T., Girard, C., Longo, L., Chesnokova, H., & Prado, J. (2023). Cortical 1018 
representations of numbers and nonsymbolic quantities expand and 1019 
segregate in children from 5 to 8 years of age. PLoS Biology, 21(1), 1020 
e3001935. 1021 

Nakai, T., & Nishimoto, S. (2023). Artificial neural network modelling of the 1022 
neural population code underlying mathematical operations. 1023 
NeuroImage, 119980. 1024 

Nemmi, F., Cignetti, F., Vaugoyeau, M., Assaiante, C., Chaix, Y., & Péran, P. 1025 
(2023). Developmental dyslexia, developmental coordination disorder 1026 
and comorbidity discrimination using multimodal structural and functional 1027 
neuroimaging. Cortex; a Journal Devoted to the Study of the Nervous 1028 
System and Behavior, 160, 43–54. 1029 

Nogay, H. S., & Adeli, H. (2020). Machine learning (ML) for the diagnosis of 1030 
autism spectrum disorder (ASD) using brain imaging. Reviews in the 1031 
Neurosciences. https://doi.org/10.1515/revneuro-2020-0043 1032 

Peters, L., Bulthé, J., Daniels, N., Op de Beeck, H., & De Smedt, B. (2018). 1033 
Dyscalculia and dyslexia: Different behavioral, yet similar brain activity 1034 
profiles during arithmetic. NeuroImage: Clinical, 18, 663–674. 1035 

Pina, V., Campello, V. M., Lekadir, K., Seguí, S., García-Santos, J. M., & 1036 
Fuentes, L. J. (2022). Mathematical Abilities in School-Aged Children: A 1037 



 36 

Structural Magnetic Resonance Imaging Analysis With Radiomics. 1038 
Frontiers in Neuroscience, 16, 819069. 1039 

Płoński, P., Gradkowski, W., Altarelli, I., Monzalvo, K., van Ermingen-Marbach, 1040 
M., Grande, M., Heim, S., Marchewka, A., Bogorodzki, P., Ramus, F., & 1041 
Jednoróg, K. (2017). Multi-parameter machine learning approach to the 1042 
neuroanatomical basis of developmental dyslexia. Human Brain 1043 
Mapping, 38(2), 900–908. 1044 

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., 1045 
Munafò, M. R., Nichols, T. E., Poline, J.-B., Vul, E., & Yarkoni, T. (2017). 1046 
Scanning the horizon: towards transparent and reproducible 1047 
neuroimaging research. Nature Reviews. Neuroscience, 18(2), 115–126. 1048 

Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. 1049 
(2014). Hippocampal-neocortical functional reorganization underlies 1050 
children’s cognitive development. Nature Neuroscience, 17(9), 1263–1051 
1269. 1052 

Racine, E., Bar-Ilan, O., & Illes, J. (2005). fMRI in the public eye. Nature 1053 
Reviews. Neuroscience, 6(2), 159–164. 1054 

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and 1055 
mathematics: A review of developmental, individual difference, and 1056 
cognitive approaches. Learning and Individual Differences, 20(2), 110–1057 
122. 1058 

Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of 1059 
developmental dyslexia in left-hemispheric posterior brain regions 1060 
predate reading onset. Proceedings of the National Academy of Sciences 1061 
of the United States of America, 109(6), 2156–2161. 1062 

Rasheed, M. A., Chand, P., Ahmed, S., Sharif, H., Hoodbhoy, Z., Siddiqui, A., & 1063 
Hasan, B. S. (2021). Use of artificial intelligence on 1064 
Electroencephalogram (EEG) waveforms to predict failure in early school 1065 
grades in children from a rural cohort in Pakistan. PloS One, 16(2), 1066 
e0246236. 1067 

Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). 1068 
Neuroanatomical correlates of developmental dyscalculia: combined 1069 
evidence from morphometry and tractography. Frontiers in Human 1070 
Neuroscience, 3, 51. 1071 

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., 1072 
Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of 1073 



 36 

Structural Magnetic Resonance Imaging Analysis With Radiomics. 1038 
Frontiers in Neuroscience, 16, 819069. 1039 

Płoński, P., Gradkowski, W., Altarelli, I., Monzalvo, K., van Ermingen-Marbach, 1040 
M., Grande, M., Heim, S., Marchewka, A., Bogorodzki, P., Ramus, F., & 1041 
Jednoróg, K. (2017). Multi-parameter machine learning approach to the 1042 
neuroanatomical basis of developmental dyslexia. Human Brain 1043 
Mapping, 38(2), 900–908. 1044 

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., 1045 
Munafò, M. R., Nichols, T. E., Poline, J.-B., Vul, E., & Yarkoni, T. (2017). 1046 
Scanning the horizon: towards transparent and reproducible 1047 
neuroimaging research. Nature Reviews. Neuroscience, 18(2), 115–126. 1048 

Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. 1049 
(2014). Hippocampal-neocortical functional reorganization underlies 1050 
children’s cognitive development. Nature Neuroscience, 17(9), 1263–1051 
1269. 1052 

Racine, E., Bar-Ilan, O., & Illes, J. (2005). fMRI in the public eye. Nature 1053 
Reviews. Neuroscience, 6(2), 159–164. 1054 

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and 1055 
mathematics: A review of developmental, individual difference, and 1056 
cognitive approaches. Learning and Individual Differences, 20(2), 110–1057 
122. 1058 

Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of 1059 
developmental dyslexia in left-hemispheric posterior brain regions 1060 
predate reading onset. Proceedings of the National Academy of Sciences 1061 
of the United States of America, 109(6), 2156–2161. 1062 

Rasheed, M. A., Chand, P., Ahmed, S., Sharif, H., Hoodbhoy, Z., Siddiqui, A., & 1063 
Hasan, B. S. (2021). Use of artificial intelligence on 1064 
Electroencephalogram (EEG) waveforms to predict failure in early school 1065 
grades in children from a rural cohort in Pakistan. PloS One, 16(2), 1066 
e0246236. 1067 

Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). 1068 
Neuroanatomical correlates of developmental dyscalculia: combined 1069 
evidence from morphometry and tractography. Frontiers in Human 1070 
Neuroscience, 3, 51. 1071 

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., 1072 
Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of 1073 

 37 

language: Integrative modeling converges on predictive processing. 1074 
Proceedings of the National Academy of Sciences of the United States of 1075 
America, 118(45). https://doi.org/10.1073/pnas.2105646118 1076 

Schwartz, F., Epinat-Duclos, J., Léone, J., Poisson, A., & Prado, J. (2020). 1077 
Neural representations of transitive relations predict current and future 1078 
math calculation skills in children. Neuropsychologia, 141, 107410. 1079 

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., 1080 
Papademetris, X., & Constable, R. T. (2017). Using connectome-based 1081 
predictive modeling to predict individual behavior from brain connectivity. 1082 
Nature Protocols, 12(3), 506–518. 1083 

Shim, M., Hwang, H.-J., Kuhl, U., & Jeon, H.-A. (2021). Resting-State 1084 
Functional Connectivity in Mathematical Expertise. Brain Sciences, 11(4). 1085 
https://doi.org/10.3390/brainsci11040430 1086 

Siegelman, N., van den Bunt, M. R., Lo, J. C. M., Rueckl, J. G., & Pugh, K. R. 1087 
(2021). Theory-driven classification of reading difficulties from fMRI data 1088 
using Bayesian latent-mixture models. NeuroImage, 242, 118476. 1089 

Skeide, M. A., Kraft, I., Müller, B., Schaadt, G., Neef, N. E., Brauer, J., Wilcke, 1090 
A., Kirsten, H., Boltze, J., & Friederici, A. D. (2016). NRSN1 associated 1091 
grey matter volume of the visual word form area reveals dyslexia before 1092 
school. Brain: A Journal of Neurology, 139(Pt 10), 2792–2803. 1093 

Stangl, M., Maoz, S. L., & Suthana, N. (2023). Mobile cognition: imaging the 1094 
human brain in the “real world.” Nature Reviews. Neuroscience. 1095 
https://doi.org/10.1038/s41583-023-00692-y 1096 

Suárez-Pellicioni, M., Lytle, M., Younger, J. W., & Booth, J. R. (2019). A 1097 
longitudinal neuroimaging dataset on arithmetic processing in school 1098 
children. Scientific Data, 6, 190040. 1099 

Supekar, K., Iuculano, T., Chen, L., & Menon, V. (2015). Remediation of 1100 
Childhood Math Anxiety and Associated Neural Circuits through 1101 
Cognitive Tutoring. The Journal of Neuroscience: The Official Journal of 1102 
the Society for Neuroscience, 35(36), 12574–12583. 1103 

Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., 1104 
Fuchs, L., & Menon, V. (2013). Neural predictors of individual differences 1105 
in response to math tutoring in primary-grade school children. 1106 
Proceedings of the National Academy of Sciences of the United States of 1107 
America, 110(20), 8230–8235. 1108 



 38 

Tamboer, P., Vorst, H. C. M., Ghebreab, S., & Scholte, H. S. (2016). Machine 1109 
learning and dyslexia: Classification of individual structural neuro-1110 
imaging scans of students with and without dyslexia. NeuroImage. 1111 
Clinical, 11, 508–514. 1112 

Thomas, M. S. C., Ansari, D., & Knowland, V. C. P. (2019). Annual Research 1113 
Review: Educational neuroscience: progress and prospects. Journal of 1114 
Child Psychology and Psychiatry, and Allied Disciplines, 60(4), 477–492. 1115 

Tomasi, D., & Volkow, N. D. (2020). Network connectivity predicts language 1116 
processing in healthy adults. Human Brain Mapping, 41(13), 3696–3708. 1117 

Tomaz Da Silva, L., Esper, N. B., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A. 1118 
(2021). Visual Explanation for Identification of the Brain Bases for 1119 
Developmental Dyslexia on fMRI Data. Frontiers in Computational 1120 
Neuroscience, 15, 594659. 1121 

Torres-Ramos, S., Salido-Ruiz, R. A., Espinoza-Valdez, A., Gómez-Velázquez, 1122 
F. R., González-Garrido, A. A., & Román-Godínez, I. (2020). A brain 1123 
connectivity characterization of children with different levels of 1124 
mathematical achievement based on graph metrics. PloS One, 15(1), 1125 
e0227613. 1126 

Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different 1127 
supervised machine learning algorithms for disease prediction. BMC 1128 
Medical Informatics and Decision Making, 19(1), 281. 1129 

Ullman, H., Almeida, R., & Klingberg, T. (2014). Structural maturation and brain 1130 
activity predict future working memory capacity during childhood 1131 
development. The Journal of Neuroscience: The Official Journal of the 1132 
Society for Neuroscience, 34(5), 1592–1598. 1133 

Ullman, H., & Klingberg, T. (2017). Timing of White Matter Development 1134 
Determines Cognitive Abilities at School Entry but Not in Late 1135 
Adolescence. Cerebral Cortex , 27(9), 4516–4522. 1136 

Ullman, H., Spencer-Smith, M., Thompson, D. K., Doyle, L. W., Inder, T. E., 1137 
Anderson, P. J., & Klingberg, T. (2015). Neonatal MRI is associated with 1138 
future cognition and academic achievement in preterm children. Brain: A 1139 
Journal of Neurology, 138(Pt 11), 3251–3262. 1140 

Usman, O. L., Muniyandi, R. C., Omar, K., & Mohamad, M. (2021). Gaussian 1141 
smoothing and modified histogram normalization methods to improve 1142 
neural-biomarker interpretations for dyslexia classification mechanism. 1143 
PloS One, 16(2), e0245579. 1144 



 38 

Tamboer, P., Vorst, H. C. M., Ghebreab, S., & Scholte, H. S. (2016). Machine 1109 
learning and dyslexia: Classification of individual structural neuro-1110 
imaging scans of students with and without dyslexia. NeuroImage. 1111 
Clinical, 11, 508–514. 1112 

Thomas, M. S. C., Ansari, D., & Knowland, V. C. P. (2019). Annual Research 1113 
Review: Educational neuroscience: progress and prospects. Journal of 1114 
Child Psychology and Psychiatry, and Allied Disciplines, 60(4), 477–492. 1115 

Tomasi, D., & Volkow, N. D. (2020). Network connectivity predicts language 1116 
processing in healthy adults. Human Brain Mapping, 41(13), 3696–3708. 1117 

Tomaz Da Silva, L., Esper, N. B., Ruiz, D. D., Meneguzzi, F., & Buchweitz, A. 1118 
(2021). Visual Explanation for Identification of the Brain Bases for 1119 
Developmental Dyslexia on fMRI Data. Frontiers in Computational 1120 
Neuroscience, 15, 594659. 1121 

Torres-Ramos, S., Salido-Ruiz, R. A., Espinoza-Valdez, A., Gómez-Velázquez, 1122 
F. R., González-Garrido, A. A., & Román-Godínez, I. (2020). A brain 1123 
connectivity characterization of children with different levels of 1124 
mathematical achievement based on graph metrics. PloS One, 15(1), 1125 
e0227613. 1126 

Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different 1127 
supervised machine learning algorithms for disease prediction. BMC 1128 
Medical Informatics and Decision Making, 19(1), 281. 1129 

Ullman, H., Almeida, R., & Klingberg, T. (2014). Structural maturation and brain 1130 
activity predict future working memory capacity during childhood 1131 
development. The Journal of Neuroscience: The Official Journal of the 1132 
Society for Neuroscience, 34(5), 1592–1598. 1133 

Ullman, H., & Klingberg, T. (2017). Timing of White Matter Development 1134 
Determines Cognitive Abilities at School Entry but Not in Late 1135 
Adolescence. Cerebral Cortex , 27(9), 4516–4522. 1136 

Ullman, H., Spencer-Smith, M., Thompson, D. K., Doyle, L. W., Inder, T. E., 1137 
Anderson, P. J., & Klingberg, T. (2015). Neonatal MRI is associated with 1138 
future cognition and academic achievement in preterm children. Brain: A 1139 
Journal of Neurology, 138(Pt 11), 3251–3262. 1140 

Usman, O. L., Muniyandi, R. C., Omar, K., & Mohamad, M. (2021). Gaussian 1141 
smoothing and modified histogram normalization methods to improve 1142 
neural-biomarker interpretations for dyslexia classification mechanism. 1143 
PloS One, 16(2), e0245579. 1144 

 39 

Valente, G., Castellanos, A. L., Hausfeld, L., De Martino, F., & Formisano, E. 1145 
(2021). Cross-validation and permutations in MVPA: Validity of 1146 
permutation strategies and power of cross-validation schemes. 1147 
NeuroImage, 238, 118145. 1148 

van Ermingen-Marbach, M., Grande, M., Pape-Neumann, J., Sass, K., & Heim, 1149 
S. (2013). Distinct neural signatures of cognitive subtypes of dyslexia 1150 
with and without phonological deficits. NeuroImage. Clinical, 2, 477–490. 1151 

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., 1152 
Ugurbil, K., & WU-Minn HCP Consortium. (2013). The WU-Minn Human 1153 
Connectome Project: an overview. NeuroImage, 80, 62–79. 1154 

Varoquaux, G. (2018). Cross-validation failure: Small sample sizes lead to large 1155 
error bars. NeuroImage, 180(Pt A), 68–77. 1156 

Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, 1157 
Y., & Thirion, B. (2017). Assessing and tuning brain decoders: Cross-1158 
validation, caveats, and guidelines. NeuroImage, 145(Pt B), 166–179. 1159 

Ventura-Campos, N., Ferrando-Esteve, L., & Epifanio, I. (2022). The underlying 1160 
neural bases of the reversal error while solving algebraic word problems. 1161 
Scientific Reports, 12(1), 21654. 1162 

Vieira, B. H., Pamplona, G. S. P., Fachinello, K., Silva, A. K., Foss, M. P., & 1163 
Salmon, C. E. G. (2022). On the prediction of human intelligence from 1164 
neuroimaging: A systematic review of methods and reporting. 1165 
Intelligence, 93, 101654. 1166 

Wang, J., Lytle, M. N., Weiss, Y., Yamasaki, B. L., & Booth, J. R. (2022). A 1167 
longitudinal neuroimaging dataset on language processing in children 1168 
ages 5, 7, and 9 years old. Scientific Data, 9(1), 4. 1169 

Wang, S., Zhao, Y., Li, J., Wang, X., Luo, K., & Gong, Q. (2019). Brain structure 1170 
links trait conscientiousness to academic performance. Scientific 1171 
Reports, 9(1), 12168. 1172 

Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). 1173 
The seductive allure of neuroscience explanations. Journal of Cognitive 1174 
Neuroscience, 20(3), 470–477. 1175 

Whitby, P. J. S., & Mancil, G. R. (2009). Academic Achievement Profiles of 1176 
Children with High Functioning Autism and Asperger Syndrome: A 1177 
Review of the Literature. Education and Training in Developmental 1178 
Disabilities, 44(4), 551–560. 1179 



 40 

Xu, M., De Beuckelaer, A., Wang, X., Liu, L., Song, Y., & Liu, J. (2015). Regional 1180 
amplitude of the low-frequency fluctuations at rest predicts word-reading 1181 
skill. Neuroscience, 298, 318–328. 1182 

Young, C. B., Wu, S. S., & Menon, V. (2012). The neurodevelopmental basis of 1183 
math anxiety. Psychological Science, 23(5), 492–501. 1184 

Yu, X., Ferradal, S., Dunstan, J., Carruthers, C., Sanfilippo, J., Zuk, J., Zöllei, L., 1185 
Gagoski, B., Ou, Y., Grant, P. E., & Gaab, N. (2022). Patterns of Neural 1186 
Functional Connectivity in Infants at Familial Risk of Developmental 1187 
Dyslexia. JAMA Network Open, 5(10), e2236102. 1188 

Yu, X., Zuk, J., Perdue, M. V., Ozernov-Palchik, O., Raney, T., Beach, S. D., 1189 
Norton, E. S., Ou, Y., Gabrieli, J. D. E., & Gaab, N. (2020). Putative 1190 
protective neural mechanisms in prereaders with a family history of 1191 
dyslexia who subsequently develop typical reading skills. Human Brain 1192 
Mapping, 41(10), 2827–2845. 1193 

Yuan, B., Xie, H., Wang, Z., Xu, Y., Zhang, H., Liu, J., Chen, L., Li, C., Tan, S., 1194 
Lin, Z., Hu, X., Gu, T., Lu, J., Liu, D., & Wu, J. (2023). The domain-1195 
separation language network dynamics in resting state support its flexible 1196 
functional segregation and integration during language and speech 1197 
processing. NeuroImage, 274, 120132. 1198 

Zahia, S., Garcia-Zapirain, B., Saralegui, I., & Fernandez-Ruanova, B. (2020). 1199 
Dyslexia detection using 3D convolutional neural networks and functional 1200 
magnetic resonance imaging. Computer Methods and Programs in 1201 
Biomedicine, 197, 105726. 1202 

Zainuddin, A., Mansor, W., Lee, K. Y., & Mahmoodin, Z. (2018). Performance of 1203 
support vector machine in classifying EEG signal of dyslexic children 1204 
using RBF kernel. Indones. J. Electr. Eng. Comput. Sci, 9(2), 403–409. 1205 

Zare, M., Rezvani, Z., & Benasich, A. A. (2016). Automatic classification of 6-1206 
month-old infants at familial risk for language-based learning disorder 1207 
using a support vector machine. Clinical Neurophysiology: Official 1208 
Journal of the International Federation of Clinical Neurophysiology, 1209 
127(7), 2695–2703. 1210 

Zhang, R., Wang, J., Lin, H., Turk-Browne, N. B., & Cai, Q. (2023). Neural 1211 
signatures of second language proficiency in narrative processing. 1212 
Cerebral Cortex . https://doi.org/10.1093/cercor/bhad133 1213 

 1214 



 40 

Xu, M., De Beuckelaer, A., Wang, X., Liu, L., Song, Y., & Liu, J. (2015). Regional 1180 
amplitude of the low-frequency fluctuations at rest predicts word-reading 1181 
skill. Neuroscience, 298, 318–328. 1182 

Young, C. B., Wu, S. S., & Menon, V. (2012). The neurodevelopmental basis of 1183 
math anxiety. Psychological Science, 23(5), 492–501. 1184 

Yu, X., Ferradal, S., Dunstan, J., Carruthers, C., Sanfilippo, J., Zuk, J., Zöllei, L., 1185 
Gagoski, B., Ou, Y., Grant, P. E., & Gaab, N. (2022). Patterns of Neural 1186 
Functional Connectivity in Infants at Familial Risk of Developmental 1187 
Dyslexia. JAMA Network Open, 5(10), e2236102. 1188 

Yu, X., Zuk, J., Perdue, M. V., Ozernov-Palchik, O., Raney, T., Beach, S. D., 1189 
Norton, E. S., Ou, Y., Gabrieli, J. D. E., & Gaab, N. (2020). Putative 1190 
protective neural mechanisms in prereaders with a family history of 1191 
dyslexia who subsequently develop typical reading skills. Human Brain 1192 
Mapping, 41(10), 2827–2845. 1193 

Yuan, B., Xie, H., Wang, Z., Xu, Y., Zhang, H., Liu, J., Chen, L., Li, C., Tan, S., 1194 
Lin, Z., Hu, X., Gu, T., Lu, J., Liu, D., & Wu, J. (2023). The domain-1195 
separation language network dynamics in resting state support its flexible 1196 
functional segregation and integration during language and speech 1197 
processing. NeuroImage, 274, 120132. 1198 

Zahia, S., Garcia-Zapirain, B., Saralegui, I., & Fernandez-Ruanova, B. (2020). 1199 
Dyslexia detection using 3D convolutional neural networks and functional 1200 
magnetic resonance imaging. Computer Methods and Programs in 1201 
Biomedicine, 197, 105726. 1202 

Zainuddin, A., Mansor, W., Lee, K. Y., & Mahmoodin, Z. (2018). Performance of 1203 
support vector machine in classifying EEG signal of dyslexic children 1204 
using RBF kernel. Indones. J. Electr. Eng. Comput. Sci, 9(2), 403–409. 1205 

Zare, M., Rezvani, Z., & Benasich, A. A. (2016). Automatic classification of 6-1206 
month-old infants at familial risk for language-based learning disorder 1207 
using a support vector machine. Clinical Neurophysiology: Official 1208 
Journal of the International Federation of Clinical Neurophysiology, 1209 
127(7), 2695–2703. 1210 

Zhang, R., Wang, J., Lin, H., Turk-Browne, N. B., & Cai, Q. (2023). Neural 1211 
signatures of second language proficiency in narrative processing. 1212 
Cerebral Cortex . https://doi.org/10.1093/cercor/bhad133 1213 

 1214 

 41 

Back matters section 1215 
 1216 
Data and code availability 1217 
There are no data or code associated with this article. 1218 
 1219 
Author Contributions: T.N. and J.P. conceptualized the study, T.N., C.T., and 1220 
J.P. were involved in the article selection and data extraction, T.N. wrote a 1221 
manuscript with critical revisions by J.P. and C.T. 1222 
 1223 
Acknowledgments 1224 
This study was funded by the Agence Nationale de la Recherche (ANR-14-1225 
CE30–0002 and ANR-17-CE28–0014), the Fédération pour la Recherche sur le 1226 
Cerveau (FRC2022) and the Fondation de France (00123415/WB-2021-38649) 1227 
to J.P., and by H2020 Marie Skłodowska-Curie Actions (grant number 1228 
101023033) and MEXT/JSPS KAKENHI (grant numbers 24H01559 and 1229 
24H02172) to T.N. The funders had no role in study design, data collection and 1230 
analysis, decision to publish, or preparation of the manuscript. 1231 
 1232 
Competing interests 1233 
The authors have declared that no competing interests exist. 1234 
 1235 
 1236 


