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In this research, 10- to 12- and 13- to 15-year-old children were presented with very
simple addition andmultiplication problems involving operands from 1 to 4. Critically, the
arithmetic sign was presented before the operands in half of the trials, whereas it was
presented at the same time as the operands in the other half. Our results indicate that
presenting the ‘x’ sign before the operands of a multiplication problem does not speed up
the solving process, irrespective of the age of children. In contrast, presenting the ‘+’ sign
before the operands of an addition problem facilitates the solving process, but only in 13
to 15-year-old children. Such priming effects of the arithmetic sign have been previously
interpreted as the result of a pre-activation of an automated counting procedure, which
can be applied as soon as the operands are presented. Therefore, our results echo
previous conclusions of the literature that simple additions but not multiplications can be
solved by fast counting procedures. More importantly, we show here that these
procedures are possibly convoked automatically by children after the age of 13 years. At a
more theoretical level, our results do not support the theory that simple additions are
solved through retrieval of the answers from long-term memory by experts. Rather, the
development of expertise for mental addition would consist in an acceleration of
procedures until automatization.

Statement of contribution
What is already known?
! Contrary to the longstanding view that simple addition problems such as 3 + 2 are solved by

expert children and adults through retrieval of the answers frommemory, a new theory suggests
that these problems could be solved by automated and unconscious counting procedures.
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Jérôme Prado, Lyon Neuroscience Research Center, CH Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France (email:
jerome.prado@univ-lyon1.fr).
*These authors share senior authorship.

DOI:10.1111/bjdp.12363

1

https://orcid.org/0000-0002-1591-5225
https://orcid.org/0000-0002-1591-5225
https://orcid.org/0000-0002-1591-5225
mailto:catherine.thevenot@unil.ch
mailto:jerome.prado@univ-lyon1.fr


! Evidence for this alternative view has been provided in adults using the arithmetic sign priming
paradigm, showing that addition can be primed by the presentation of the « +» sign before the
operands of the problems.

What this study adds?

! Nevertheless, the age at which such automated counting procedures emerge is still
unknown and the aim of the present paper is to determine it.

! We used the arithmetic sign paradigm and tested 10- to 12- and 13- to 15-year-old
children and showed that priming effect of the addition sign appears only at the age
of 13.

Background

Arithmetic is part of our daily life. We perform additions, multiplications, subtractions,
and divisions all day long without even realizing it. We need to perform calculations in
order to determine the remaining time before a meeting, the number of eggs needed for a
cake depending on the number of guests, the number of pounds we have put on after
eating the cake, or the correct combinations of coins in order to pay. Somehow amazingly,
researchers do not agree yet on the way individuals perform these relatively simple
calculations. For example, a currently debated issue in the mathematical cognition
literature is related to the strategies used by expert solvers when they perform simple
additions.

From the 70s, the dominant view has been to consider that after repetitive counting
practice, children from the age of 10 and adults can directly retrieve the answers of single-
digit additions from long-term memory (e.g., 4 + 3 = 7 or 7 + 8 = 15; Ashcraft &
Battaglia, 1978; Ashcraft & Fierman, 1982; Groen & Parkman, 1972). Nevertheless, soon
after retrieval models have been put forward, an alternative view has been offered by
Baroody (1983; 1984; 1994), who suggested that very quick procedures and heuristic and
rule applications could also be used by experts to solve simple problems. According to the
author, these procedural strategies could sometimes be faster than retrieval and could
therefore be preferred by individuals.

The first experimental set of data supporting this claim has been provided only a few
years ago, using a priming paradigm of the arithmetic sign. Fayol and Thevenot (2012)
asked individuals with a high level of arithmetic skills to solve simple operations. The
authors showed that the presentation of the addition and subtraction signs 150 ms before
the operands speeds up the solving process. On the contrary, no priming effectwas found
for multiplication problems. The authors concluded that the addition and the subtraction
arithmetic signs can pre-activate ‘something’, independent from the operands, which can
be subsequently used to solve the problems. Obviously, this ‘something’ is not activated
for multiplication or, at least, is not used to solve multiplication problems. After having
discarded several alternative interpretations, the authors concluded, in support to
Baroody’s past assumptions, that abstract solving procedures were primed by the ‘+’ and
the ‘-’ signs. For multiplication problems, such procedures are not used because they are
mainly solved by retrieval of the answers from memory (e.g., Campbell & Xue, 2001;
Verguts & Fias, 2005; De Visscher & Noël, 2014).
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Fayol and Thevenot (2012) suggested that the counting procedures used by expert
adults to solve addition and subtraction problems could correspond to very fast moves
along a left- to right-oriented mental number line. More concretely, to solve a problem
such as 4 + 3, individuals could place a mental counter on the quantity 4 and operate 3
quick moves on the right of the line in order to reach the answer 7 (see Figure 1). The
existence of such anorientedmental line, onwhichquantities are represented by children
and adults, is widely recognized (e.g., Dehaene, Bossini, & Giraux, 1993; Hoffman,
Hornung, Martin, & Shiltz, 2013; Shaki, Fischer, & Petrusic, 2009; Thevenot, Dewi, Banta
Lavenex, & Bagnoud, 2018; Thevenot, Fayol, & Barrouillet, 2018). Mathieu, Gourjon,
Couderc, Thevenot, and Prado (2016) experimentally tested Fayol and Thevenot’s
hypothesis and, accordingly, showed that addition problems are solved faster when the
second operands of the problems are positioned on the right side of a computer screen
rather thanwhen it is on the left side. The reversewas observed for subtraction problems.
The authors concluded that situations in which spatial mental moves are congruent with
the side of the second operand facilitate the solving process (compared to incongruent
situations). Interestingly, such facilitations were not observed for multiplication
problems. This is again consistent with the widely accepted view that answers of
multiplication problems are retrieved from long-term memory, because arithmetic fact
retrieval is not supposed to require any mental spatial moves. Attentional moves along a
mental number line during addition and subtraction solving has also been documented
through manipulation of the locus of attention towards the left or the right side of space
(e.g., Masson&Pesenti, 2016;Wiemers, Bekkering, & Lindemann, 2014), target detection
tasks (Masson, Andres, Alsamour, Bollen, &Pesenti, 2020;Masson&Pesenti, 2014), or eye
movement recording (Masson, Letesson, & Pesenti, 2018).

As already evoked, counting procedures could be extremely fast in expert adults.
Barrouillet and Thevenot (2013) reached the conclusion that eachmove on the line could
be executed in only 20 to 40 ms. Such a rapid process cannot reach individuals’
consciousness, and this is the reason why expert solvers could mistake automated
counting procedures for retrieval (Uittenhove, Thevenot, & Barrouillet, 2016). In fact,
only the result of the procedure could be consciously accessed but not the multiple steps
involved during the solving process (Anderson, 1993).

Even if the existence of automated counting procedures is still under debate (see Chen
& Campbell, 2018 for a review), it has been experimentally supported by several teams of
researchers using various paradigms (e.g., Liu, Cai, Verguts, & Chen, 2017; Pinheiro-
Chagas, Dotan, Piazza, & Dehaene, 2017; Zhou et al., 2007; Zhu, Luo, You, &Wang, 2018;
Zhu, You, Gan, & Wang, 2019). However, most of the studies were conducted in adults
and the agewhere automated counting procedures emerge still needs to be determined. It
has been repeatedly described that counting procedures are slow and demanding in
children at the beginning of learning (e.g., Groen & Parkman, 1972; Siegler & Shrager,
1984). However, if we are right in assuming that the development of addition skills
consists in a shift from these conscious procedures to automated and unconscious ones,

Figure 1. Illustration of a counting procedure for the problem 4 + 3.
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the point in time of this automatization during development can be and needs to be
identified.

To achieve this goal, the use of the priming paradigm designed by Fayol and Thevenot
(2012, see also Roussel, Fayol, & Barrouillet, 2002) seems appropriate because, as already
explained, priming effects of the addition sign are likely to constitute the signature of the
use of automated counting procedures. As a matter of fact, an adaptation of this paradigm
was used by Mathieu, Epinat-Duclos, Leone et al. (2018) in a neuroimaging study. The
authors showed that priming effects of the ‘+’ sign appeared around the middle of 7th

grade (12- to 13-year-old children) andwere associatedwith increased sign-related activity
in spatial regions of the right hippocampus. Younger children from 5th to the beginning of
7th grade (8 to 12 years) did not show such priming effects. These results therefore
suggest that automated counting procedures appear around the age of 12 or 13.
Nevertheless, in Mathieu et al.’ study, children had to solve problems involving operands
from 1 to 9 and the use of counting procedures could have been limited to the largest
problems. Indeed, even proponents of retrieval theories recognize that large single-digit
addition problemswith a sum superior to 10 are sometimes solved through reconstructive
strategies, even by expert children and adults (e.g., Campbell & Austin, 2002; Campbell &
Xue, 2001; LeFevre, Sadesky, & Bisanz, 1996). It is therefore possible that Mathieu et al.’s
results are due to the specific category of large simple addition problems when smaller
problems are in fact solved by retrieval of the answers from long-term memory.

In order to examine this possibility in the present study, we used the arithmetic sign
priming paradigm and asked children aged from 10 to 12 years and from 13 to 15 years to
solvemultiplication and addition problems involving very small operands from1 to 4. This
very limited number of problemswas chosen because they are considered undoubtedly as
solved by retrieval of the answers by researchers defending retrieval theories (e.g.,
Campbell and Timm, 2000; Campbell & Xue, 2001; Van Beek, Guesquière, De Smedt, &
Lagae, 2014). As described earlier, Mathieu, Epinat-Duclos, Leone, et al. (2018) showed
that children after the age of 12 exhibit a priming effect with the ‘+’ sign. If we replicate
this findingwith smaller problems that those used inMathieu, Epinat-Duclos, Leone, et al.,
we will be able to confidently conclude that automated counting procedures are used
from this age onwards, even for problems that are the best candidate for retrieval in
retrieval models. Whatever the age of children,multiplication should not present priming
effect of the ‘×’ sign because such small problems are solved through retrieval of the
answers. Finally, a positive correlation between the size of priming effects for addition and
arithmetical skills is expected because counting procedures are more likely to be already
automatized in children presenting high arithmetical abilities.

Method

Participants
Sixty-one French children took part in this experiment. The sample was constituted of 33
5th and 6th graders, aged between 10 and 12 years (M = 11.23, SD = 0.67 years; 17 girls)
and 28 7th, 8th, and 9th graders aged between 13 and 15 years (M = 14.00, SD =
0.74 years; 15 girls). This classification in twogroupsdependingon the grades is based on
the fact that in France, 5th and 6th graders belong to a learning cycle (‘Cycle 3’)whereas 7th,

8th, and 9th graders belong to the next cycle (‘Cycle 4’). None of the participants suffered
from learning disabilities.

Our study was conducted following the principles of the Declaration of Helsinki.
Parental written consents were collected for each child. More precisely, parents
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consented to their children participation in our study and to the inclusion of their results
in our analyses. They were informed that their children’s result will not be identifiable via
the paper, and we acknowledge that we have fully anonymized them.

Material and procedure

Arithmetic sign priming task
Children were instructed to solve arithmetic problems by giving their answer orally as
quickly and as accurately as possible. The problems were constructed using operands
from 1 to 4 but tie problems such as 2 + 2 or 2 × 2 were excluded. This decision was
made because researchers all agree, whatever the theory they defend, that tie problems
are solved by retrieval (e.g., Campbell & Xue, 2001; Fayol & Thevenot, 2012). Therefore,
contrary to very small non-tie addition problems, there is no debate about the strategy
used to solve them.

The couple of digits were presented in the addition and in the multiplication
conditions. For both operations, the arithmetic sign was presented either 150 ms before
the operands (i.e., – 150 ms Stimulus Onset Asynchrony (SOA) condition) or at the same
time as the operands (i.e., null SOA condition). In this last condition, the ‘@’ sign was
presented 150 ms before the problems. This manipulation ensures that potential priming
effects are not due to mental preparation that would be possible as soon as a symbol,
whatever its nature (i.e., arithmetical or not), is presented to participants. Each child was
therefore presentedwith 48 problems (12 couples of digits × 2 operations × 2 SOA). The
problems were randomly presented within each set.

The experiment was run under the DMDX software (Forster & Forster, 2003). Vocal
responses were recorded with a voice key and individually checked offline for accuracy
using CheckVocal software (Protopapas, 2007). CheckVocal was also used to manually
adjust the latencies recorded by DMDX. More precisely, for each response recorded,
CheckVocal allows for the visualization of the sound played out through a waveform.
When, despite pre-calibration of the voice key for sensitivity, the onset of the response
given by participants is not accurately detected, the timing mark can be manually placed
on the onset of the sound waveform. This checking and possible manual readjustments
ensure a measure of solution time within a 1 ms precision.

Each trial began with the presentation of a 2500 ms dot fixation signal. The dot was
white during 1500 ms and then turned red during 1000 ms. It was followed by the
presentation of the arithmetic sign 150 ms before the operands in the negative SOA
condition or by the presentation of the ‘@’ sign 150 ms before the presentation of the
problem in the null SOA condition. In the negative SOA condition, the two operands
appeared on a next screen on each side of the sign, and in the null SOA condition, the ‘@’
sign was replaced by the problem in its whole. The problem was displayed on the screen
until a verbal response onset was detected by the voice key. Before the experimental
phase, 8warm-up problemswere presented in order to familiarize the childwith the task.
Each child was tested individually in a quiet room within the schools and the completion
of the task took about 20 minutes.

Arithmetic fluency tests
Childrenwere tested collectively during a 10-minute session on twopaper andpencil tests
measuring general arithmetic ability. Using two different tests allowed us to collect
reliable measures of children arithmetical skills.
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Tempo test rekenen (TTR)
This test contains five columns of 40 problems each. Every column covers a different
arithmetical operation: addition, subtraction, division, multiplication, and a mixed
column including all operations. In each of the column, problems increase in difficulty,
starting with problems involving two one-digit numbers and ending with problems with
two 2-digit numbers for addition, subtraction, and division (e.g., 54 + 27; 43–27; 48:12).
Formultiplication, themost difficult problems are constituted of a one single-digit number
and a two-digit number (e.g., 5 × 17). For each column, children are instructed to solve
correctly as many problems as possible within 1 minute. One point is given for each
correctly solved problem.

Math fluency subtest of the Woodcock-Johnson III
In this test, children are presented with 160 problems consisting in addition, subtraction,
and multiplication of two single-digit numbers. At the beginning of the test, children are
presented with a mix of additions and subtractions. After 60 problems, multiplication
problems are introduced and intermixed between additions and subtractions. Children
are instructed to correctly solve as many problems as possible within a period of
3 minutes. One point is given for each correctly solved problem.

Results

The data sets that were generated and analysed in the current study are available in the
Open Science Framework (OSF) repository, (https://osf.io/9p4hn/?view_only=84d2f
33603c64ebf8389eab4427b19f7).

Arithmetic fluency tests
Children’s scores on the two arithmetic fluency tests were positively correlated, r = .87,
p < .001. As expected, 13- to 15-year-old children scored higher than 10- to 12-year-old
children on both of the arithmetic fluency tests, t (59) = 5.05, p < .001, d = 1.30 for the
TTR and t (59) = 5.20, p < .001, d = 1.34 for the subtest of the Woodcock-Johnson III.

Moreover, the scores of the two tests negatively correlated with children’s mean
reaction times in the arithmetic sign priming task, r = −.78, p < .001 for the TTR and
r = −78, p < .001 for the subtest of theWoodcock-Johnson III. The scores also negatively
correlatedwith thepercentages of errors in the signpriming task, r = .31,p = .016 for the
TTR and r = .22, p = .089 for the subtest of the Woodcock-Johnson III.

Arithmetic sign priming

Percentages of errors
Overall, children performed very well on the task as they made less than 3% of errors. A 2
(Age Group: 10 to 12, 13 to 15) × 2 (Operation: addition, multiplication) × 2 (SOA: null,
negative) ANOVA, with the first factor as a between measure was performed on these
percentages (Table 1). The analysis revealed an effect of Age Group showing that 10- to
12-year-old children made more errors than 13- to 15-year-old children (+ 1.5%), F(1,
59) = 4.35, η2p = .07, p = .041. The Operation × SOA interaction was also significant, F
(1, 59) = 4.96, η2p = .08, p = .030, showing that children made more errors on addition
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problems in the negative than in the null SOA condition (+ 1.9%), F(1, 59) = 5.36,
η2p = .08, p = .024, whereas for multiplication problems the difference between negative
and null SOA conditions (0.4%) was not significant, F < 1. No other effect reached
significance.

Solution times
The analysis on solution timeswas carried out on correctly solvedproblemsonly (i.e., 97%
of the trials). Technical errors (corresponding to situations where no response was
recorded: 4.4 % of the data) and outliers (below 200 ms and more than two standard
deviations away from the participants’mean: 5%of the data)were also discarded from the
analysis, which was therefore conducted on 87.6 % of the data. A 2 (Age Group: 10 to 12,
13 to 15) × 2 (Operation: addition, multiplication) × 2 (SOA: null, negative) ANOVA,
with the first factor as a between measure was performed on solution times (Table 1).

The analysis revealed an effect of Age Group showing that 13- to 15-year-old children
were faster than 10- to 12-year-old children (−207 ms), F(1, 59) = 15.76, η2p = .21,
p < .001. There was also an effect of Operation showing that addition problems were
solved faster than multiplication problems (−85 ms), F(1, 59) = 30.04, η2p = .34,
p < .001. More importantly, the Age Group × Operation × SOA interaction was margin-
ally significant, F(1, 59) = 3.41, η2p = .06, p = .070. Planned comparisons revealed that in
13- to 15-year-old children, solution times for additions were shorter in the negative than
in the null SOA condition (45 ms), F(1, 59) = 5.43, η2p = .08, p = .023, whereas for
multiplications the difference between null and negative SOA conditions was only 6 ms
and was not significant, F < 1. In contrast, there was no significant priming effect of the
arithmetic sign in 10- to 12-year-old children, whatever the operation (Fs < 1, for both
addition and multiplication problems).

Correlation analyses
Correlations between the size of priming effect in the addition condition and arithmetical
skills were performed on the full sample of children and for each Age Group. As shown in
Table 2, priming effects did not correlatewith TTR scores, evenwhenweconsidered only

Table 1. Mean solution times (in ms) and percentages of errors as a function of age group, operation,
and SOA (standard deviations between brackets)

Conditions

10- to 12-year-olds 13- to 15-year-olds

Addition Multiplication Addition Multiplication

Percentages of errors (%)
Null SOA 2.02 (3.63) 4.80 (5.90) 0.89 (2.62) 2.68 (4.57)
Negative SOA 4.04 (5.94) 4.04 (6.29) 2.68 (4.57) 2.68 (4.57)

Solution times (ms)
Null SOA 1253 (214) 1342 (230) 1067 (165) 1135 (208)
Negative SOA 1255 (269) 1330 (251) 1022 (141) 1129 (204)
Priming effects −2 12 45* 6

Note. Priming effects corresponded to the difference between solution times in the null SOA and the
negative SOA conditions.
*p < .05.
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the addition part of the test, norwith the score in the arithmetic subtest of theWoodcock-
Johnson III. We also calculated a mean score combining the results of each child on both
arithmetical fluency tests but it did not correlate either with the size of the addition
priming effects.

Discussion

This research was conducted in order to identify the age at which priming effects of an
arithmetic sign can be observed for very simple problems. A previous study suggested that
these effects emerge around 13 years of age for single-digit addition problems involving
operands from 1 to 9 (Mathieu, Epinat-Duclos, Leone et al., 2018). The goal of the present
study was to determine whether the same conclusions can be reached when only very
simple non-tie problems with operands from 1 to 4 are considered. Our results reveal that
it is the case. Specifically, we found that whereas 10- to 12-year-old children did not show
priming effects for additions, 13- to 15-year-old children solved small addition problems
faster when the ‘+’ sign was presented before the operands.

Arithmetic sign priming effects are typically interpreted as the result of an automatic
activation of a counting procedure triggered by the arithmetic sign (Fayol & Thevenot,
2012; Mathieu, Epinat-Duclos, Sigovan, et al., 2018; Roussel et al., 2002; Thevenot, Dewi,
Bagnoud, Wolfer, et al., 2020). Therefore, our results suggest that such procedures are
automatically activated for addition problems by children from the age of 13. This suggests
that arithmetic development may be characterized by the progressive replacement of
conscious and demanding counting procedures (used by children at the beginning of
learning) by unconscious and automatic counting procedures after repetitive practice
(Bagnoud, Dewi, Castel, Mathieu, & Thevenot, 2021; Thevenot, Barrouillet, Castel, &
Uittenhove, 2016; Thevenot, Dewi, Bagnoud, Uittenhove, & Castel, 2020). As already
explained in our Introduction, these procedures are likely to correspond to step-by-step
attentional moves on a mental number line (Figure 1). The process of automatization by
which initial conscious countingprocedures are eventually run onto completion (without
conscious access) can be understood within the theoretical framework of expertise
development. At the beginning of learning, the execution of a procedure is slow,
stoppable, and cognitively costly but, through extensive practice, the speed of the
procedure execution increases drastically (Newell &Rosenbloom, 1981).Moreover, once
the procedure is launched, it is impossible to stop it and it is no more cognitively
demanding (e.g., Schneider and Shiffrin, 1977, see Perruchet, 1988 for a review). Our
results show that this level of automaticity is reached by children for the execution of
simple additions at the age of 13.

Table 2. Correlations between arithmetical skills and priming effects in the addition condition for the
full sample of children (n = 61), 10- to 12-year-old children (n = 33), and 13- to 15-year-old children
(n = 28)

Variables Full sample 10- to 12-year-olds 13- to 15-year-olds

TTR addition score .128 .220 −.297
TTR total score .166 .268 −.293
Subtest of the Woodcock-Johnson III .161 .220 −.325
Mean score across the two tests .159 .262 −.299
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The idea that the development of arithmetic expertise allows for procedure
automatization led us to examine the relation between the size of the priming effects
observed in the addition condition and children’s arithmetical skills. These skills were
measured through two different arithmetical fluency tests, which results correlated with
performance in the arithmetic sign priming task. Contrary to what we expected, we did
not find any correlation between these two variables, whatever the age of children. It is
therefore possible that priming effects, and therefore automated procedures, emerge as a
result of development or cognitive maturation rather than increase in arithmetic fluency
per se (see also, Dı́ az-Barriga Yáñez et al., 2020 for similar results and conclusions). Still,
such an interpretationmight seemat oddswith theway Fayol andThevenot (2012, Exp. 2)
and Thevenot, Dewi, Bagnoud, Wolfer, et al. (2020) had to select their participants to
observe addition sign priming effects in young and older adults. In both populations, there
was no priming effect of the arithmetic sign when the entire sample of participants was
considered. The effect on addition appeared only when participants with the best
arithmetical fluency scores were taken into account in the analyses. It is therefore
puzzling that these effects can be observed in 13- to 15-year-old children without any
selection. Still, results showing priming effect of the addition sign and absence of priming
effect of the multiplication sign have been replicated in numerous experiments reported
in several papers (Fayol & Thevenot, 2012; Mathieu, Epinat-Duclos, Léone, et al., 2018;
Roussel et al., 2002; Thevenot, Dewi, Bagnoud, Wolfer, et al., 2020) and conducting
further research to disentangle and better understand the role of age, education, and
expertise in the appearance of arithmetic sign priming effects and automated procedures
is therefore important.

In the present study, the fact that we focused our attention on problems involving very
small operands from 1 to 4 is crucial because the results associated to these problems are
viewedby retrieval theory proponents as undoubtedly retrieved frommemoryby children
from the age of 20, whatever the operation in which they are included (e.g., Ashcraft &
Fierman, 1982 for addition; Koshmider & Ashcraft, 1991 for multiplication). Therefore,
within this theory, very small addition andmultiplication problems should be subjected to
the same arithmetic sign priming effects, which is not the case in our experiment. Indeed,
whereas, as already discussed here, addition can be primed by the ‘+’ sign in older
children, this is not the case for multiplication, which is never primed by the ‘×’ sign,
whatever the age of children. The associations between operands and results are
classically learnt by rote learning at school for multiplication, and our results confirm that
they are not solved by automated procedures. As unanimously recognized by researchers
in the domain of numerical cognition, our results confirm that retrieval of the answers
frommemory is the dominant strategy in order to solve multiplications (e.g., Campbell &
Xue, 2001; Prado,Mutreja, & Booth, 2014; Prado et al., 2011, 2013; Thibodeau, LeFevre, &
Bisanz, 1996).

It is important to note here two limitations of our study. First, we are left in a situation
wherein a lack of arithmetic sign priming effect is interpreted as the use of a retrieval
strategy for multiplication, whereas a lack of priming effect for addition in younger
children is interpreted as the use of non-automated procedures.We acknowledge that this
is aweakness of our paradigm.Nevertheless,whereas the lack of priming effect can lead to
several interpretations, we are confident that the presence of priming effects of the
arithmetic sign constitutes the signature of the use of automated procedures that can be
activated in the absence of the operands. Second, our sample size is substantially larger
than the one analysed in Mathieu, Epinat-Duclos, Leone et al. (2018) (n = 61 vs. n = 34).
However, it is still limited, especially given the complex nature of our design, which
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involves assessing differences in SOA as a function of operation and age (Brysbaert, 2019).
Thus, these results should be seen as providing the groundwork for future studies that
might investigate the development of automatized procedures with larger sample sizes.
Nevertheless, the present study suggests that such procedures can be used by children to
solve very simple addition problems from the age of 13 years.
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Céline Poletti (Data curation; Formal analysis;Writing – original draft) Jean-François Perez
(Conceptualization; Formal analysis; Investigation; Methodology) Jean-Charles Houillon
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