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Solving single-digit subtraction and addition problems is associated with left and right shifts of attention in adults.
Here, we explored the development of these spatial shifts in children from the third to fifth grade. In two experi-
ments, children solved single-digit addition (Experiments 1 and 2), subtraction (Experiment 1), andmultiplication
(Experiment 2) problems in which operands and the arithmetic sign were shown sequentially. Although the first
operand and the arithmetic sign were presented on the center of a screen, the second operand was presented either
in the left or the right visual field. In Experiment 1, we found that subtraction problemswere increasingly associated
with a leftward bias by the fifth grade, such that problem solving was facilitated when the second operand was in
the left visual field. In Experiment 2, we found that children can also associate addition problems with the right
side of space by the fourth grade. No developmental increase in either leftward or rightward bias was observed for
multiplication problems. These attentional shifts might be due to the increasing reliance on calculation procedures
that involve mental movements to the left or right of a sequential representation of numbers during subtraction
and addition.
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Introduction

Increasing evidence indicates that our abil-
ity to process numbers is grounded in spatial
representations.1 For example, small numbers are
associated with the left side of space and large
numbers with the right side of space.2–4 Numbers
also automatically bias spatial attention, such that
targets are detected faster in the left visual field
(LVF) when they follow small numbers, and faster
in the right visual field (RVF) when they follow
large numbers.5,6 Taken together, this suggests

aThese authors share senior authorship.

that numerical magnitudes may be represented
on a mental number line (MNL) that is organized
horizontally and in ascending order from left to
right.3,7

Recent studies suggest that such spatial associa-
tions may not be limited to number processing per
se, but might also be observed during arithmetic
calculation in adults. For example, when adults
are asked to estimate the result of a subtraction or
an addition problem, they tend to underestimate
the result of a subtraction and overestimate the
result of an addition.8,9 Several explanations for
this effect, termed the operational momentum effect
(OME)) have been proposed.10–12 Nevertheless,
one major explanation is that participants rely
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Figure 1. Sequence and timing of a sample trial.

on attentional shifts along the MNL to estimate
results of problems. In a recent study, we argued
that such attentional shifts occur during exact
symbolic arithmetic as well.13 Specifically, we asked
adults to solve single-digit arithmetic problems
presented on a computer screen. While the first
operand and the arithmetic sign were presented
sequentially at the center of the screen, the second
operand was presented either in the LVF or the
RVF (Fig. 1). Results indicated that participants
solved addition problems faster when the second
operand was presented in the RVF than the LVF,
while they solved subtraction problems faster
when the second operand was presented in the
LVF than the RVF. Thus, spatial shifts of attention
are elicited during exact single-digit arithmetic in
adults. Importantly, no spatial bias was observed
in multiplication problems (which are explicitly
learned by rote in school). It is possible that these
horizontal shifts of attention reflect calculation
procedures relying on left–right movements along
the MNL that have been automatized after years of
practice with arithmetic calculation.14
To date, a few studies have investigated the

associations between arithmetic and space in chil-

dren. However, available evidence suggests that
these associations may be relatively late develop-
ing. For example, studies suggest that the OME
does not emerge until the age of 9.15–17 It is pos-
sible that associations between space and arith-
metic might be the result of years of education
and that an “unconscious shift of attention on the
MNL becomes evident only with increasing exper-
tise and automatization.”16 This proposal is con-
sistent with the idea that automatic leftward and
rightward movements along a sequential represen-
tation of numbers might stem from the repeated
use of deliberate counting during arithmetic learn-
ing in elementary school.14,18–20 Another nonmu-
tually exclusive possibility is that the emergence of
associations between arithmetic and space is driven
by the maturation of cognitive mechanisms that are
necessary to navigate along the MNL. For exam-
ple, a recent neuroimaging study showed that asso-
ciations between arithmetic operators and space
are supported by grade-related increases of activ-
ity in the hippocampus, suggesting that the mat-
uration of hippocampal mechanisms may support
the emergence of the link between arithmetic and
space.21 Yet, to our knowledge, there is no evidence
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that either development or increase in arithmetic
fluency is associated with the emergence of shifts of
attention along the MNL during mental calculation
in children.
To explore this question, we presented children

from the third to fifth gradewith the same paradigm
as Mathieu and colleagues.13 Specifically, children
were asked to solve single-digit addition and sub-
traction problems that were presented sequentially,
with the last operand shown in either the LVF or
RVF. Children also completed a timed test of arith-
metic fluency, indicating their degree of knowl-
edge and practice with arithmetic.We expected that
either increasing grade or arithmetic fluency would
be associated with emerging associations between
addition and subtraction problems and rightward
and leftward shifts of attention, respectively.

Experiment 1

Materials and methods
Participants. Our previous study using the same
paradigm indicated that the difference in spa-
tial biases between small addition and subtrac-
tion problems was associated with an effect size of
d= 0.55.13 Within one group, a power analysis indi-
cates that a minimum sample size of n = 22 is nec-
essary to detect an effect of that size in the expected
direction at P= 0.05 (with a power of 80%). Because
we expected to study children in the third to fifth
grades, we planned on recruiting a minimum of 22
children in each grade (i.e., 66 children total). This
target sample was reached after two waves of data
collection, one between December 2014 and March
2015 (data collection was stopped then because of
lack of resources) and the other between November
and December 2019 (when new resources became
available).
Participants in Wave 1 were recruited from three

private elementary schools in the area of Lyon in
France. They consisted of 63 children aged between
7 and 11 years old. Data from six children were
excluded from the analysis for medical (dyscalcu-
lia and deafness) and behavioral (lack of answers
for one of the two types of operations) reasons.
Thus, data from Wave 1 came from the remaining
57 children (32 females, mean age = 9.44 years old,
SD = 0.81). Participants in Wave 2 were recruited
from one private primary school in the area of Lyon
(n = 29) and via a social media website (n = 18).
Thus, 47 children aged between 7 and 10 years old

were in Wave 2 (20 females, mean age = 8.75 years
old, SD = 0.61). Data from three children were
further removed because they were outliers (see
below). As such, final data came from 101 children
(50 females) with ages between 7 and 11 years old
(mean age = 9.10, SD = 0.80). All children were
native French speakers. Overall, 47 children were in
third grade, 33 children were in fourth grade, and
21 children were in fifth grade. The experiment was
performed in accordance with the recommenda-
tions of the Ethics Committee of the CNRS, as well
as in accordance with the Declaration of Helsinki.

Procedure. All children were tested in a single
session that lasted approximately 30 min, either in
a quiet area of their school or in the laboratory.
Each child was tested individually and gave ver-
bal consent to participant. Parent’s written consents
were also obtained. The testing session started with
theMath Fluency test from theWoodcock–Johnson
battery22 to assess children’s arithmetic skills (see
below), followed by the experimental task.13

Measures.
Math fluency. Children’s arithmetic fluency was

first assessed with theWoodcock–Johnson III Math
Fluency subtest. The Math Fluency subtest is
a paper-and-pencil test that includes single-digit
addition, subtraction, and multiplication problems
presented in amixedmanner. The children’s perfor-
mance was calculated based on the number of cor-
rectly responded items in less than 3 minutes.22 To
facilitate analyses and interpretation of the results,
the whole sample was evenly split into three groups
as a function of their math fluency scores: 31 chil-
dren were from the “lower fluency” group, 38 chil-
dren were from the “intermediate fluency” group,
and 32 children were from the “higher fluency”
group (Table 1).
Experimental task. The experimental task was

computer based and adapted from Mathieu and
colleagues.13 Small arithmetic problems included
pairs of nonidentical operands between 1 and 5 ((2,
1); (3, 1); (3, 2); (4, 1); (4, 2); (4, 3); (5, 1); (5, 2); (5,
3); (5, 4)), and large arithmetic problems included
pairs of nonidentical operands between 5 and 9 ((6,
5); (7, 5); (7, 6); (8, 5); (8, 6); (8, 7); (9, 5); (9, 6); (9, 7);
(9, 8)). Both small and large problems contained the
number 5 in order to have the samenumber of prob-
lems in both categories. These pairs of noniden-
tical operands were used to construct 20 addition
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Table 1. Descriptive statistics of Experiment 1

Variable Mean (SD) Range (min–max) Skewness Kurtosis

Age (years) 9.10 (0.80) 7.5–11 0.52 −0.61
WJ Math Fluency
Lower fluency 30.87 (3.30) 23–36 0.00 −0.26
Intermediate fluency 41.29 (3.00) 37–46 0.19 −1.17
Higher fluency 58.72 (9.67) 47–82 1 0.50
All children 43.61 (12.69) 23–82 0.94 0.69

dRT small addition problems
3rd grade 34.49 (257.91) −564.76 to 639.30 −0.11 0.83
4th grade −64.85 (254.44) −651.87 to 641.96 0.23 0.96
5th grade 8.06 (272.17) −620.12 to 539.06 0.02 0.52
All children −3.46 (260.92) −651.87 to 621.14 0.03 0.47

dRT small subtraction problems
3rd grade 67.20 (239.39) −423.25 to 621.14 0.44 −0.31
4th grade 33.31 (272.71) −679.18 to 569.65 −0.25 0.16
5th grade −80.13 (155.87) −329.57 to 250.33 0.26 −0.52
All children 25.49 (241.25) −679.18 to 621.14 0.25 0.09

RT small addition problems 1710.19 (382.87) 929.45 to 2661.13 0.13 −0.40
RT small subtraction problems 1839.16 (460.59) 794.59 to 3195.25 0.51 0.23

problems (10 small and 10 large problems) and 20
subtraction problems (10 small and 10 large prob-
lems) with their second operand presented once to
the right and once to the left, resulting in a total
of 80 problems (i.e., 40 addition and 40 subtrac-
tion problems). For both addition and subtraction
problems, the larger of the two operands was always
presented first. This ensured that results from the
subtraction problems were positive and that chil-
dren could not anticipate the type of problem to
come. The presentation of the trials was pseudoran-
domized, so that no more than three problems of
the same type (i.e., same size and spatial location
of the second operand) would appear consecutively.
Four scenarios were created by generating four ran-
dom lists of trials. Each scenario was separated into
two runs of 40 operations. The experiment system-
atically started with a practice run of eight trials,
including tie problems (e.g., 7 − 7), problems with
0 (e.g., 3 + 0), and problems with small and large
operands (e.g., 7 + 3).
In each trial, operands and the arithmetic sign

were displayed in white Times New Roman 36-
point font on a black background (Fig. 1). Each trial
started with the presentation of a white fixation dot
for 500 ms followed by the presentation of the first
operand that lasted an additional 500 ms on screen.
After a first delay of 500ms, either a “+” or a “–“ sign

appeared on screen for 150 ms at the center of the
screen. A second delay of 300 ms separated the dis-
appearance of the arithmetic sign from the second
operand. This delay was chosen because it was the
delay for which arithmetic shifts were maximal in
Mathieu et al.13 The second operand was then dis-
played for 150 ms, either 5° to the left or 5° to the
right of the center of the screen. Children needed to
solve the calculation verbally in less than 5 s, oth-
erwise the software automatically moved on to the
next arithmetic problem.
All response times (RTs) were recorded through

a headset microphone and corresponded to the
period between the presentation of the second
operand and the onset of the answer. The experi-
ment was controlled by the DmDX software,23 and
RTs were checked offline and manually adjusted
with CheckVocal24 for each participant. Before the
experiment started, children were given instruc-
tions printed on an A4 white sheet and were able to
ask any questions if needed. Children were located
44 cm from the 15-inch computer screen. A chin
rest was used to avoid head movements.
Data analysis. For each participant and oper-

ation, we subtracted for our main analyses the
mean RT of trials in which the second operand
appeared on the right from the mean RT of tri-
als in which the second operand appeared on the
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left. This difference in RT (dRT) served as the
dependent variable. Following the procedure of Ref.
13, we excluded from the analyses data from par-
ticipants who were outliers because their average
dRTs differed bymore than 2.5 SDs from the sample
mean (this corresponded to three children). dRTs
were then analyzed in linear mixed effect analyses.
Because our hypotheses were unidirectional (i.e.,
we only expected dRTs for addition to be positive
and larger than dRTs for subtraction, while we only
expected dRTs for subtraction to be negative and
smaller than dRTs for addition), P values for all
t-tests are one-tailed.

Results
Only correct responses were analyzed. Correct trials
constituted 90.33% of trials for small problems, but
only 62.78% of trials for large problems. To maxi-
mize power and ensure that our results would not
be confounded by differences in accuracy between
older and younger children, we exclusively focused
our analyses on small problems. Across all par-
ticipants, an intraclass correlation (ICC) analysis
indicated that reliability of RTs between runs was
moderate to strong (ICC = 0.6; 95% CI: 0.5−0.7,
P < 0.001). On average, small addition problems
were answered more accurately (91% versus 89%;
t(100) = 2.15, P = 0.03, d = 0.21) and faster
(1710 versus 1839 ms; t(100) = −3.98, P < 0.001,
d = −0.40) than small subtraction problems. There
was no difference in RTs between problems with
the second operand on the right compared with
problems with the second operand on the left,
either for addition (1713.72 versus 1805.67 ms;
t(100) = 0.76, P = 0.45, d = 0.08) or subtraction
(1857.09 versus 2017.28ms; t(100)= 0.85, P= 0.40,
d = 0.08).

Descriptive statistics for age, math fluency scores,
dRTs for small addition and subtraction problems,
and RTs for small addition and subtraction prob-
lems are shown in Table 1. First, we examined the
proportion of the children with a rightward bias
(i.e., positive dRT) versus a leftward bias (i.e., neg-
ative dRT) in addition and subtraction problems as
a function of grade. For addition problems, positive
dRTs were evenly distributed across grades (55% in
third grade, 42% in fourth grade, and 52% in fifth
grade). Specifically, subjects with rightward biases
were not more frequent in the fifth grade than in
the third grade (χ2(1, n = 68) = 0.05, P = 0.82,

V = 0.02) or in the fifth grade than in the fourth
grade (χ2(1, n = 54) = 0.51, P = 0.47, V = 0.07).
For subtraction problems, however, the proportion
of children with a negative dRT increased from
the third to fifth grade (40% in third grade, 48%
in fourth grade, and 71% in fifth grade). That is,
children with leftward biases were more frequent
in the fifth grade than in the third grade (χ2(1,
n = 68) = 5.58, P = 0.02, V = 0.24) and tended
to be more frequent in the fifth grade than in the
fourth grade (χ2(1, n = 54) = 2.76, P = 0.09,
V = 0.17).

Second, a linear mixed-model analysis with dRT
(i.e., difference in RT between problems with the
second operand on the left and problems with the
second operand on the right) as dependent vari-
able was performed using GAMLj25 in jamovi.26
Fixed factors included the between-subject factors
grade (third, fourth, and fifth) and arithmetic flu-
ency (lower, intermediate, and higher fluency), as
well as the within-subject factor operation (addition
and subtraction). Subject was entered as a random
factor. We also included wave, gender, and over-
all RTs as covariates to control for these potential
confounds. There was no main effect of operation
(F(1,181) = 0.75, P = 0.75, f < 0.1) or arithmetic
fluency (F(2,181) = 0.44, P = 0.64, f < 0.1). Arith-
metic fluency also did not interact with operation
(F(1,181)= 1.89,P= 0.15, f< 0.1) or with any other
factor. However, there was a tendency for a main
effect of grade (F(2,181) = 2.91, P = 0.06, f = 0.14),
which was qualified by an interaction with opera-
tion (F(2,181) = 3.01, P = 0.05, f = 0.15). Analy-
ses of simple effects revealed that whereas dRT was
not larger for addition than subtraction in the third
grade (t(181)= −0.47, P= 0.68, d= −0.09) and the
fourth grade (t(181)= −1.64, P= 0.95, d= −0.24),
it was larger for addition than subtraction in the fifth
grade (t(181) = 1.84, P = 0.03, d = 0.28). As can be
seen in Figure 2, the effect was driven by a decrease
in dRTwith grade for subtraction problems. Indeed,
simple effect analyses also showed that dRTs for sub-
traction problems were not smaller than 0 in the
third (t(92) = −1.89, P = 0.97, d = −0.28) and
fourth grades (t(92)= −0.95, P= 0.83, d= −0.12).
dRTs for subtraction problems were, however, sig-
nificantly smaller than 0 in fifth grade (t(92)= 1.94,
P = 0.03, d = 0.51). dRTs for addition problems
were larger than 0 in none of the grades (all t’s <

1.09, all P’s > 0.14).
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Figure 2. dRT as a function of operation (subtraction and
addition) and grade (third, fourth, and fifth) in Experiment 1.
Error bars represent standard error of the mean (SEM).

Discussion
Experiment 1 reveals two main findings. First, we
found evidence for an increase in leftward bias (i.e.,
a decrease in dRT) when children solve subtrac-
tion problems over the course of elementary school,
such that children in fifth grade exhibit shorter RTs
when the second operand is on the LVF (as com-
pared with the RVF). Critically, because dRT for
subtraction varied as a function of grade and not
arithmetic fluency, our findings suggest that asso-
ciations between subtraction problems and the left
side of space are more likely to emerge as a result of
development rather than increase in arithmetic flu-
ency per se. Second, contrary to our hypothesis, we
did not find any evidence for an increase in right-
ward bias for addition problems in this sample of
children. One possibility is that these children may
have relied on a strategy involving direct retrieval of
the answer from long-term memory when solving
small addition problems. For instance, the French
math curriculum emphasizes that small addition
problemsmay bememorized in tables.27 This would
arguably (1) prevent children from using strate-
gies relying on movements along the MNL and (2)
make addition problems more similar to multipli-
cation problems (which are largely learned by rote
in school) than to subtraction problems (which are
never learned by rote in the French curriculum27).
Therefore, in Experiment 2, we directly compared
the spatial biases (or lack thereof) associated with
single-digit addition and multiplication problems
in another group of children. This design was also
adapted from Ref. 13.

Experiment 2

Materials and methods
Participants. As with Experiment 1, data collec-
tion was conducted in two different time waves to
reach the target sample size. Participants in Wave 1
were recruited from one private primary school in
the area of Lyon, France. They consisted of 38 chil-
dren aged between 8 and 11 years old (21 females,
mean age = 10 years old, SD = 0.65). Participants
in Wave 2 were recruited from another private ele-
mentary school in the same area (n = 22) and via a
social media website (n= 9). Thus, 31 children aged
between 8 and 10 years were in Wave 2 (20 females,
mean age = 9.42 years old, SD = 0.48). Data from
one child were removed because they were outliers
(see below). As such, the overall sample came from
68 children (41 females) with ages between 8 and 11
years old (mean age = 9.74 years old, SD = 0.65).
All children were native French speakers. Overall,
42 childrenwere in the fourth grade and 26 children
were in the fifth grade. The experiment was per-
formed in accordance with the recommendations
of the Ethics Committee of the CNRS, as well as in
accordance with the Declaration of Helsinki.

Procedure. Experiment 2 followed the same pro-
cedure as Experiment 1, with all children being
tested in a single session. However, the testing ses-
sion lasted between 30 and 40 min because the
experimental task included two more runs (see
below). The testing session started with the Math
Fluency test from theWoodcock–Johnson battery,22
followed by the experimental task.

Measures. The Woodcock–Johnson Math Flu-
ency subtest used in Experiment 2 was the same as
in Experiment 1. To facilitate analyses and interpre-
tation of the results, the whole sample was evenly
split into three groups as a function of math flu-
ency score: 24 children were from the lower fluency
group, 21 children were from the intermediate flu-
ency group, and 22 children were from the higher
fluency group (Table 2). Regarding the experimental
task, the pairs of nonidentical operands, the classifi-
cation of problems (i.e., small and large), the appa-
ratus, and the stimulus timing were the same as in
Experiment 1. Hence, only full details for the stim-
uli and the experimental procedure of Experiment
2 are provided next.
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Table 2. Descriptive statistics of Experiment 2

Variable Mean (SD) Range min–max Skewness Kurtosis

Age (years) 9.74 (0.65) 8.33–11 0.10 −0.97
WJ Math Fluency (n = 67)
Lower fluency 39.58 (4.57) 27–45 −0.95 0.99
Intermediate fluency 50 (2.65) 46–53 −0.32 −1.40
Higher fluency 67.36 (9.20) 54–86 0.57 −0.79
All children 51.97 (13.13) 27–86 0.72 0.06

dRT small addition problems
4th grade 84.81 (185.85) −316.51 to 455.38 0.21 −0.38
5th grade 102.23 (155.70) −170.47 to 452.71 0.62 −0.31
All children 91.47 (173.94) −316.51 to 455.38 0.29 −0.33

dRT small multiplication problems
4th grade −27.63 (212.80) −496.96 to 460.62 0.13 −0.04
5th grade 6.44 (207.49) −500.64 to 452.27 −0.16 0.71
All children −14.61 (209.89) −500.64 to 460.62 0.02 0.06

RT small addition problems 1629.33 (388.27) 813.90 to 2600.42 0.47 0.10
RT small multiplication problems 1727.22 (355.62) 900.99 to 2771.22 0.30 0.56

For Experiment 2, the pairs of nonidentical
operands were used to construct 20 addition prob-
lems (10 small and 10 large problems) and 20 mul-
tiplication problems (10 small and 10 large prob-
lems), with their second operand presented once to
the right and once to the left, resulting in 40 addition
and 40multiplication problems. The larger operand
could be presented as either the first or the sec-
ond operand, such that each problemwas presented
once for each order of presentation of operand (first
versus second position). Therefore, there were a
total of 160 problems, which were separated into 4
runs of 40 operations. The trials were pseudoran-
domized and four different scenarios based on four
different lists were created (with four runs in each
scenario).

Data analysis. As in Experiment 1, dRT was cal-
culated for each participant and operation by sub-
tracting the mean RT of trials in which the sec-
ond operand appeared on the right from the mean
RT of trials in which the second operand appeared
on the left. Outlier participants (i.e., participants
with an average dRT that was smaller or larger
than 2.5 SDs from the sample mean in either small
addition or multiplication problems) were removed
from the analyses (this corresponded to one child).
dRTs were then analyzed in linearmixed effect anal-
yses. P values for all t-tests are one-tailed, as we
only expected either null or positive dRTs (as well as

either similar or larger dRTs for addition than mul-
tiplication).

Results
As in Experiment 1, only correct responses in small
arithmetic problems were analyzed. Correct trials
constituted 89.4% of trials for small problems, but
only 56.89% of trials for large problems. There
was no accuracy difference between small addition
problems (89.75%) and small multiplication prob-
lems (89.05%) (t(67) = 0.78, P = 0.50, d = 0.09).
Additionally, data from one child on the WJ Math
Fluency task was considered as missing in fur-
ther statistical analyses due to failure to understand
task instructions. Therefore, this participant was
dropped from all analyses that involved the math
fluency scores.
Descriptive statistics for age, math fluency scores,

dRTs for small addition and multiplication prob-
lems, and overall RTs for all small addition andmul-
tiplication problems are shown in Table 2. First,
we examined the proportion of the children with
a rightward bias (i.e., positive dRT) versus a left-
ward bias (i.e., negative dRT) in addition and mul-
tiplication problems as a function of grade (Fig. 3).
For both addition andmultiplication problems, pos-
itive dRTs were evenly distributed across grades
(addition: 59.52% in fourth grade, and 40.48% in
fifth grade; multiplication: 65.38% in fourth grade,
and 57.69% in fifth grade). Specifically, subjects
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Figure 3. dRT as a function of operation (multiplication and
addition) and grade (fourth and fifth) in Experiment 2. Error
bars represent standard error of the mean (SEM).

with rightward biases in addition and multiplica-
tion problems were not more frequent in the fifth
grade than in the fourth grade (χ2(1, n= 68)= 0.23,
P= 0.41,V= 0.06, for addition problems; and χ2(1,
n= 68)= 1.91,P= 0.13,V= 0.17 formultiplication
problems).
Second, dRTs were analyzed in a linear mixed-

model with grade (fourth and fifth), arithmetic
fluency (lower fluency, intermediate fluency, and
higher fluency), and operation (addition and
multiplication) entered as fixed factors, and sub-
ject entered as random factor. We also included
wave, gender, and overall RTs as covariates.
Results showed no significant main effect of grade
(F(1,119) = 0.54, P = 0.46, f < 0.1) or arithmetic
fluency (F(2,119)= 0.87, P= 0.42, f< 0.1). Neither
grade nor arithmetic fluency also interacted with
operation. There was, however, a significant main
effect of operation (F(1,119) = 10.52, P = 0.002,
f = 0.28), indicating that dRTs were on average
larger for addition than multiplication problems.
Simple effects revealed that this was the case both in
the fourth grade (t(119)= 2.94, P< 0.001, d= 0.39)
and the fifth grade (t(119) = 1.81, P = 0.04,
d = 0.40). Simple effect analyses also showed that
dRTs for addition problems were larger than 0 in
both the fourth grade (t(61) = 3.41, P = 0.001,
d = 0.53) and the fifth grade (t(61) = 3.10,
P = 0.003, d = 0.66), whereas dRTs for multi-
plication problems were larger than 0 in none of the
grades (all t’s < 0.21, all P’s > 0.37).

Discussion
Overall, two main findings can be highlighted from
Experiment 2. First, we did not find any evidence for
either a leftward or rightward bias during multipli-
cation problem solving in elementary school chil-
dren. This is consistent with the fact that answers of
multiplication problems are mainly learned by rote
in school and, therefore, never really calculated by
children. Thus, multiplication problems may never
be clearly associated with the MNL and never show
spatial associations. Second, Experiment 2 shows
that an association between addition problems and
the right side of space can be present in children as
early as in fourth grade. Critically, the lack of spa-
tial bias with multiplication problems also makes it
unlikely that this rightward bias observedwith addi-
tion problems in Experiment 2 is due to the size of
the answer. Indeed, addition outcomes are always
larger than both of the operands involved. Thus, it
could be argued that the rightward bias observed
may simply result from an association between rela-
tively large numbers and the right space of theMNL
(e.g., Refs. 2–4 and 28), rather than a calculation
procedure per se. However, outcomes of multipli-
cation problems in Experiment 2 were larger, or as
large as, the operands involved (because there were
nomultiplications involving 0). Thus, the rightward
bias observed with addition problems is more likely
due to specific aspects of addition problems (includ-
ing the fact that these problems may rely on move-
ments to the right of theMNL) than to the size of the
results involved. Nonetheless, results from Experi-
ment 2 are partly inconsistent with our own find-
ings in Experiment 1, since neither a rightward bias
nor a developmental increase in rightward bias was
found in addition problems in Experiment 1. Poten-
tial reasons for the inconsistencies between experi-
ments are discussed in the General discussion.

General discussion

Several studies suggest that arithmetic calculation
is associated with attentional shifts in adults.13,29–34
To our knowledge, however, no study has investi-
gated how and when these shifts emerge in chil-
dren, as well as whether they result from develop-
ment or increase with arithmetic fluency. The aim
of the two experiments presented in this paper was
to investigate the emergence of spatial biases dur-
ing mental calculation in children from the third to
fifth grades. Children were asked to verbally solve

8 Ann. N.Y. Acad. Sci. xxxx (2020) 1–12 © 2020 New York Academy of Sciences.



Díaz-Barriga Yáñez et al. Learning to run the number line

single-digit addition, subtraction, and multiplica-
tion problems. Operands and arithmetic signs were
presented sequentially. Although the first operand
and the arithmetic sign were presented in the cen-
ter of the screen, the presentation of the second
operand was displayed either in the left or the right
side of the fixation.

Why may children develop associations
between arithmetic problems and space?
In Experiment 1, we found that the difference in RT
between problems with a second operand on the
left versus the right side of space decreased from
third to fifth grade, such that only children at the
end of elementary school (i.e., grade 5) showed an
association between subtraction problems and the
left side of space. We also found in Experiment 2
that at least some children may show an association
between small addition problems and the right side
of space as early as grade 4. We can see at least three
potential explanations for the emergence of these
associations.
First, it is possible that the arithmetic signs them-

selves may bias spatial attention. In other words,
while subtraction signs may trigger leftward shifts
of attention, addition signs may trigger rightward
shifts of attention. For example, it has been pro-
posed that arithmetic operators might be associ-
ated with simple heuristics, such as “the result of
a subtraction should always be smaller than the
first operand” and “the result of an addition should
always be larger than the first operand.”11,28,35
Although this would be broadly consistent with
neuroimaging evidence that arithmetic operators
are associated with activity in brain region under-
lying spatial attention,21,36 we believe that this is
explanation is unlikely for two reasons. The first
one is that previous behavioral studies have failed to
find that arithmetic operators (devoid of a problem-
solving context) can bias spatial attention by them-
selves. For example, both Pinhas et al.37 and Liu
et al.29 presented participants with addition and
subtraction signs that were followed by targets that
participants had to detect in either the LVF or RVF.
None of these studies showed that arithmetic opera-
tors differentially affected target detection. The sec-
ond reason is that we did not find any rightward bias
associated with multiplication problems (neither in
the present study nor in our previous study with
adult participants, see Ref. 13). Yet, if arithmetic

signs were associated with spatial biases because
they are associated with heuristics (see above), one
could also expect an association between the mul-
tiplication sign and the right side of space, given
that results of multiplication problems are system-
atically larger than the first operand (at least when
it is greater than 1).
Second, because operands were kept constant

across operations, results were overall smaller for
subtraction than for addition problems. It could
then be argued that number–space associations
might have contributed to the difference in spatial
bias between subtraction and addition. However,
this is unlikely because number–space associations
have been demonstrated before the third grade in
previous studies,38,39 and the association between
subtraction and the left side of space was only
observed in the fifth grade in Experiment 1. Fur-
thermore, no spatial association was observed for
multiplication problems in Experiment 2, despite
the fact that multiplication problems lead to results
that are even greater than addition problems.
Third, a number of recent studies have suggested

that the repeated use of counting when young chil-
dren solve basic addition and subtraction problems
might lead to an automatization of these count-
ing procedures, rather than to the construction of
a network of arithmetic facts in memory as posited
by prior literature.14,18–20 For example, studies in
adults18,20 and 10-year-old children19 show that the
time participants take to solve very small addi-
tion problems is not constant but increases linearly
as a function of the distance between the original
operand and the sum. This suggests that, even if
theymight not be aware of it, adults and skilled chil-
dren might solve these basic problems by rapidly
“moving” from a source to a target number along
the MNL. Given the left-to-right orientation of that
MNL in children and adults,1,38,40 these forward and
backward movements are likely to resemble right-
ward and leftward shifts of attention.
The emergence of associations between arith-

metic and space in elementary school is broadly
consistent with this idea that children activate the
MNL when solving simple arithmetic problems.
Furthermore, we found that these associations
increase with grade rather than arithmetic fluency.
On the one hand, this suggests that increasing
involvement of the MNL for solving arithmetic
problems relies on the maturation of cognitive
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systems more than it relies on an increase in flu-
ency per se. For example, neuroimaging studies
have found that arithmetic problem solving relies
on a network of brain regions supporting spatial
attention.41,36 However, these mechanisms are
slow developing and additional structures might
be required in children to learn how to navigate
along the MNL.21 On the other hand, the lack of
relation between arithmetic fluency and associ-
ations between problems and space needs to be
interpreted with caution. Indeed, our measure of
arithmetic fluency was relatively broad and, because
problems were presented in a mixed manner, made
it impossible to assess fluency in each operation
independently (addition, subtraction, and multipli-
cation). Therefore, future studies should investigate
how associations between arithmetic and space
relate to fluency in different operations.

Addition problems are inconsistently related
to rightward biases
It is important to note that our results regarding
addition are nonetheless inconsistent. That is, we
observed a rightward bias in Experiment 2 but
not in Experiment 1. There are a number of pos-
sible explanations for this. However, at least two
speculations may come to mind (note that these
explanations are not mutually exclusive). First, it
is possible that children may have used different
strategies to solve addition problems in Experi-
ments 1 and 2. For instance, whereas children in
Experiment 2 may have relied on rapid calculation
supported by movements along the MNL, children
in Experiment 1 may have relied on direct retrieval
strategies. To some extent, this idea is supported by
the fact that the methods used to teach single-digit
addition in French classroom are more varied
than those used to teach single-digit subtraction.
That is, whereas single-digit subtraction is almost
never learned by rote (but rather by calculation),
single-digit addition problems can be memorized
in tables in some classrooms.27 Although rote
learning of small addition problem would often
be used alongside practice with calculation, this
would undoubtedly slow down any automatization
of procedures relying on movements along the
MNL in children (which would, therefore, fail to
exhibit a spatial bias when solving addition prob-
lems). Therefore, the use of retrieval strategies for
addition problems (or a mixture of retrieval and

calculation strategies) in children in Experiment
1 might explain the lack of association between
addition problems and the right side of space.
Unfortunately, we did not collect information
on the way children were taught addition prob-
lems in our study. Thus, this explanation remains
speculative and would require further testing.
A second possibility is that automatizing calcu-

lation procedures relying on movements along the
MNL is likely to require a great deal of practice
with counting and arithmetic calculation. Because
this may also critically differ between children
from different schools and classrooms, it is pos-
sible that children from Experiment 1 may have
been less exposed to arithmetic problem solving
than children from Experiment 2. An examina-
tion of arithmetic performance between children
from Experiments 1 and 2 might support this
idea. For example, the fourth and fifth graders
in Experiment 2 had a significantly higher score
on the math fluency test than the fourth and
fifth graders in Experiment 1 (t(119) = 2.16,
P = 0.017, one-tailed). This raises the possibil-
ity that we might have failed to observe a right-
ward bias in children from Experiment 1 because
these children were not as fluent with addition
problem solving as children from Experiment 2.
Note, however, that this possibility is mitigated by
the following two reasons. First,math fluency scores
were not related to dRTs for small addition prob-
lems in either Experiment 1 or 2. Second, we could
observe a leftward bias for subtraction problems
in Experiment 1, even when performance in these
problems was worse than for addition problems. Of
course, it is also possible that children from Exper-
iments 1 and 2 might differ with respect to cogni-
tive skills that have been shown to affect the auto-
maticity of counting procedures, such as working
memory and processing speed.14,18–20 Because these
skills were not measured here, future studies are
needed to better understand individual variability
in the development of attentional shifts during addi-
tion problem solving.

Conclusion

In sum, the present study reveals that at least some
children already associate addition problems with
the right side of space by the fourth grade, whereas
subtraction problems are associated with the left
side of space by the fifth grade. By contrast, no
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spatial bias was observed for single-digit multipli-
cation problems. To our knowledge, our findings
provide the first evidence for the emergence of
associations between simple arithmetic problems
and space in elementary school children. Although
we did not find that these associations relate to a
broad measure of arithmetic fluency, future studies
are needed to investigate how these associations
precisely relate to different aspects of arithmetic
skills. Our study also calls for studies investigating
how the way arithmetic is taught in school influ-
ences spatial biases, given that these were found to
be inconsistent between different groups of children
in the present study.
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