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27 Reasoning in Mathematical Development
Neurocognitive Foundations and Their Implications
for the Classroom

Jérôme Prado and Marie-Line Gardes

Relations are ubiquitous in mathematics, from
the understanding of measurement and pat-
terns to the acquisition of algebra and frac-
tions. In line with this observation, a growing
body of literature indicate that individual dif-
ferences in mathematical skills are associated
with individual differences in the ability to
reason about relations. In the present chapter,
we review these studies and discuss what is
known about the neural and behavioral devel-
opment of two major forms of relational
reasoning (i.e., transitive reasoning and ana-
logical reasoning). We argue that relational
reasoning may not only relate to mathematical
skills because both place demands on common
general cognitive resources, but also because
relational reasoning and numerical skills share
some underlying neurocognitive representa-
tions. Finally, the educational implications of
these studies are discussed. Notably, we sug-
gest that teachers may help scaffold the devel-
opment of relational reasoning skills in the
classroom by promoting situations in which
children are engaged in problem-solving.
In one of his many clever experiments, the

pioneering developmental psychologist Jean
Piaget asked several five- and six-year-olds to
sell him some candies (Piaget, 1952). For each
coin a child would get, Piaget would receive
one candy. Children did not have much diffi-
culty understanding this one for one exchange.

Given that the number of coins never exceeded
children’s counting ability, participants were
also able to tell Piaget how many coins they
had gained at the end of the trade. However,
when children were asked to determine the
number of candies that Piaget had received in
exchange for the coins, they struggled to
answer. In other words, children could not
infer that if there was one coin for one candy,
the number of coins and candies had to
be identical.
This classic experiment illustrates the role

inference making may play in the development
of mathematical skills. Mathematical develop-
ment is more than learning quantitative
concepts. It is also learning to manipulate
and to make inferences based on these con-
cepts. In other words, mathematical develop-
ment requires reasoning. It may thus appear
surprising that relatively few developmental
psychology studies have investigated how
reasoning skills contribute to mathematical
development. Part of the explanation may lie
in the breakthrough discovery that, contrary
to Piaget’s assumptions, children do possess
non-verbal mechanisms providing them with
early intuitions about quantitative information
(see Chapter 11). This has propelled investiga-
tions into young children’s numerical know-
ledge, as well as into the extent to which
early non-symbolic intuitions may underlie
symbolic math skills (Feigenson et al., 2013).
However, the finding that children may have
domain-specific quantitative skills does not
imply that a domain-general skill such as

This research was supported by a grant from the Agence
Nationale de la Recherche (ANR-14-CE30–0002).



Comp. by: K.VENKATESAN Stage: Proof Chapter No.: 27 Title Name: HoudeandBorst
Date:27/9/21 Time:12:02:46 Page Number: 567

reasoning cannot contribute to mathematical
development. In fact, there is increasing
awareness in the cognitive literature that
emerging mathematical skills in children are
supported by various domain-general abilities,
including working memory, executive control
and attention (Fias et al., 2013; Houdé et al.,
2011; Houdé, 2019). In keeping with this grow-
ing body of research, several studies suggest
that reasoning skills also support several
aspects of mathematical learning (Inglis &
Attridge, 2017; Morsanyi & Szücs, 2014;
Richland & Simms, 2015; Singley & Bunge,
2014). This may especially be the case of a
particular type of reasoning that will be the
focus of this chapter (i.e., reasoning about
relations).
As stated in the previous paragraph, rela-

tions are ubiquitous in mathematics. For
instance, early stages of mathematics educa-
tion require children to use and combine words
expressing relations (e.g., large/small, high/
low, long/short) to compare sizes. Later on,
understanding relations between numbers and
operations (e.g., addition is inversely related to
subtraction) is critical to master arithmetic.
Relations are also central to algebra. That is,
algebraic equations essentially indicate an
equal relationship between two expressions in
which numbers are related to variables.
Finally, the importance of understanding rela-
tions between quantities is obvious when chil-
dren learn fractions, which are defined by the
relationship between the numerator and
the denominator.
Relational reasoning, or the ability to attend

to and manipulate relations, is fundamental to
all of the activities described above. Sections
27.1 and 27.2 discuss two of the main types of
relational reasoning involved in mathematical
learning: transitive reasoning and analogical
reasoning. We first describe what is meant by
transitive reasoning, its relationship to math-
ematical learning, and subsequently turn to

analogical reasoning. We end the chapter with
a discussion of how to promote relational
reasoning during mathematics learning.

27.1 Transitive Reasoning

Transitivity is a property that arises from a set
of items that can be ordered along a single
continuum. A relation is said to be “transitive”
when it allows reasoners to infer a relationship
between two items (e.g., A and C) from two
other overlapping pairs (e.g., A and B; B and
C). For example, the relation “older than” is
transitive because it allows for the following
type of inference:

(1) Ann is older than Tom.
Tom is older than Bill.
Therefore, Ann is older than Bill

This inference is based on an ordering of items
along a linear continuum. However, transitive
relations are not necessarily linear. For
instance, transitive inferences can also be made
from sets that can be included in one another,
such as in the inference in (2):

(2) All tulips are flowers.
All flowers are plants.
Therefore, all tulips are plants.

As is clear from these examples, a transitive
conclusion follows out of necessity from the
premises. In other words, if the premises are
true, the conclusion is necessarily true. This is
the very definition of a “deduction,” and this
is why transitive reasoning is typically con-
sidered an instance of deductive reasoning.
The ability to recognize transitive relations

and make associated inferences may contrib-
ute to the acquisition of many mathematical
concepts. For example, transitive reasoning
facilitates the extraction of ordinal informa-
tion from sets of items and supports the under-
standing of hierarchical classification (Kallio,
1988; Newstead et al., 1985; Piaget & Inhelder,
1967; Rabinowitz & Howe, 1994). It is also an
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integral part of measurement skills in children
(Bryant & Kopytynska, 1976; Piaget &
Inhelder, 1967; Wright, 2001). These observa-
tions naturally suggest that transitive
reasoning skills might be associated with
mathematical performance. Several recent
studies tested this hypothesis. For instance,
Handley et al. (2004) asked children from nine
to eleven years old to evaluate the validity of
transitive inferences such as the one in (1).
Importantly, the content of the arguments
was arbitrary so that children did not have
prior beliefs regarding the conclusion.1 The
authors found that reasoning accuracy on
these neutral arguments was positively related
to performance on a standardized mathemat-
ics test and a teacher-administered measure of
numeracy. These relationships were specific to
mathematical skills because no significant cor-
relation was observed between reasoning
accuracy and teacher-administered measures
of reading or writing.
An issue with the study above is that

transitive arguments were intermixed with
conditional arguments (e.g., arguments of the
form “If P then Q, there is a P, therefore there
is a Q”). Because performance associated with
transitive arguments was not separated from

performance associated with conditional
arguments, it is unclear to what extent the
relationships observed in Handley et al.
(2004) are specific to transitive inferences.
Two subsequent studies address this issue.
Specifically, Morsanyi et al. (2017a, 2017b)
found a specific relationship between transitive
reasoning performance and mathematical abil-
ities in adolescents and adults, respectively. It
was also found that adult participants who
were the most accurate at assessing the validity
of a transitive inference were also the most
accurate at positioning a given number on a
bounded line with labeled endpoints (the
so-called number-line task) (Morsanyi et al.,
2017b). This latter finding raises the possibility
that transitive reasoning and numerical
processing may share some underlying
mechanisms.
Some important evidence for the idea that

common cognitive mechanisms underlie both
transitive reasoning and numerical processing
comes from neuroimaging studies. Indeed, pro-
cessing transitive relations and processing
numerical information appear to rely on the
same region of the posterior parietal cortex,
i.e., the intraparietal sulcus (IPS). On the one
hand, the IPS is systematically activated in a
wide range of numerical tasks, whether those
involve quantity comparison (Ansari, 2008, see
Chapter 28), mental arithmetic (Peters & De
Smedt, 2017), ordinality judgments (Lyons
et al., 2016), or fraction processing (Ischebeck
et al., 2009; Jacob & Nieder, 2009). In numer-
ical comparison tasks, for example, activity in
the IPS typically increases as the distance
between numbers decreases (Ansari, 2008;
Hubbard et al., 2005). This “neural distance
effect” mirrors the associated “behavioral dis-
tance effect” observed in those tasks (i.e.,
response times increase as the distance numbers
decrease; Moyer & Bayer, 1976). It also sug-
gests that quantities may be represented in
the IPS along a spatial continuum or “mental

1 A large body of literature has shown that inferences
are influenced by the content of the premises when
these are based on real-world content (for a review
see Evans, 2003). For example, children and adults
find it relatively difficult to infer a conclusion such as
“Houses are bigger than skyscrapers” from the
premises “Houses are bigger than trailers” and
“Trailers are bigger than skyscrapers” because it is
inconsistent with prior beliefs. They have to inhibit a
belief bias (Houdé, 2019; Moutier et al., 2006). In
contrast, it is relatively easy to infer a conclusion such
as “Elephants are bigger than mice” from the
premises “Elephants are bigger than dogs” and
“Dogs are bigger than mice” because it is consistent
with prior beliefs. In such cases, however, it is
unknown whether participants attend to the logical
structure of the arguments or whether their response
is based on beliefs about the world.
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number line” (Ansari, 2008; Hubbard et al.,
2005): the smaller the distance between two
quantities on the mental number line, the less
distinguishable those quantities are and the
longer it may take to compare them.
On the other hand, brain imaging studies

indicate that transitive reasoning (typically
measured by three-term arguments such as
those exemplified in (1) and (2)) also relies on
the IPS in adults (Prado et al., 2011). That is,
over and above differences in experimental
materials and procedures between studies, the
neuroimaging literature consistently points to
enhanced activity in the IPS during transitive
reasoning tasks. Interestingly, when multiple
premises are used in transitive reasoning tasks
(e.g., A>B, B>C, C>D, D>E), a neural dis-
tance effect is found in the IPS (Hinton et al.,
2010; Prado et al., 2010). That is, activity
associated with evaluating pairs increases as
the number of intervening items in a pair
decreases (e.g., evaluating whether B>C is
associated with more activity than evaluating
whether B>D). As in numerical comparison
tasks, this neural distance effect mirrors a
behavioral distance effect that also charac-
terizes transitive reasoning tasks with multiple
premises (i.e., response time in evaluating pairs
increases as the number of intervening items in
a pair decreases) (Potts, 1972, 1974; Prado
et al., 2008).
The presence of similar behavioral and

neural signatures in number comparison and
transitive reasoning tasks (i.e., the behavioral
and neural distance effects) might indicate a
common underlying mechanism. That is, both
numbers and transitive orderings may be
encoded along mental representations that
may be spatial in nature and supported by
mechanisms in the IPS. This hypothesis is sup-
ported by a study demonstrating that the exact
same region of the IPS exhibits a neural dis-
tance effect in numerical comparison and tran-
sitive reasoning tasks in adults (Prado et al.,

2010). Therefore, the relationship between
numerical and transitive reasoning skills may
stem from a common reliance on IPS mechan-
isms supporting the ordering of items along a
spatial dimension.
The idea that numerical processing and

transitive reasoning would rely on a common
mechanism in the IPS predicts that children
with impairments in the IPS may exhibit
impaired performance on both number
processing and transitive reasoning tasks.
Two studies confirm this prediction. First,
Morsanyi et al. (2013) asked children with
dyscalculia to solve linear transitive reasoning
problems similar to that in (1). Dyscalculia is a
disability affecting the acquisition of numer-
ical and arithmetic skills that has been consist-
ently linked to anatomical and functional
impairments in the IPS (Ansari, 2008). The
authors found that children with dyscalculia
exhibited poor performance (as compared to
typically developing children) in transitive
reasoning problems with concrete content. In
a recent study, Schwartz et al. (2018) further
showed that children with dyscalculia struggle
to integrate transitive relations such as in (1)
and (2), even when the content is abstract and
not affected by beliefs. In that study, brain
activity was also measured while children were
presented with transitive relations. The only
region in which less activity was found in
children with dyscalculia than in typically-
developing children during transitive
reasoning was the IPS. Thus, this study pro-
vides evidence that the poor transitive
reasoning skills of children with dyscalculia
may stem from functional impairments in the
IPS (see also Schwartz et al., 2020).
How and when does transitive reasoning

emerge in children? The first investigations
into the development of transitive reasoning
skills dates back to Piaget (Piaget, 1952;
Piaget & Inhelder, 1967; Wright, 2001, 2012).
The tasks used by Piaget to test transitive
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reasoning involved colored items that were
shown to children. Specifically, children were
typically presented with two overlapping pairs
(e.g., A>B, B>C). They then had to establish
the relationship between the two items that
were never presented next to one another
(e.g., A and C). Using this paradigm, Piaget
found that transitive reasoning does not fully
emerge until the age of seven or eight years.
However, researchers have highlighted several
issues with Piaget’s methodology (Wright,
2001, 2012). First, when a transitive problem
only involves three terms, one of the items in
the conclusion is always at the top of the tran-
sitive hierarchy (i.e., A), whereas the other is
always at the bottom (i.e., C). In other words,
children can attach verbal labels to these items
(e.g., “A is always the best” and “C is always
the worst”) and simply use these labels when
presented with A and C, without having to
engage in genuine reasoning. One simple way
to address this caveat is to present participants
with at least five premises (A>B, B>C, C>D,
and D>E), such that a conclusion that does
not involve endpoint items can be tested (i.e.,
B>D?) (Wright, 2012). Second, it has been
argued that Piaget did not adequately ensure
that children could remember the premises
before evaluating the conclusion (Bryant &
Trabasso, 1971). Using non-verbal problems
with five premises and an extensive training
protocol to ensure that premises were retained,
Bryant and Trabasso (1971) demonstrated that
children as young as four years could succeed
in transitive reasoning tasks (see also Russell
et al., 1996). Since that landmark study, tran-
sitive reasoning skills have been shown in
many animal species, including non-human
primates, rats, birds, and fish (Brannon &
Terrace, 1998; Grosenick et al., 2007; Paz
et al., 2004; Vasconcelos, 2008; see Chapter 7).
Therefore, transitive reasoning appears to have
a relatively ancient evolutionary history, per-
haps because it has critical adaptive value in

facilitating the representation of hierarchies in
socially organized species (Vasconcelos, 2008).
In sum, there is considerable evidence that,

contrary to Piaget’s assumptions, transitive
reasoning emerges early in children. This does
not mean, however, that transitive reasoning
skills do not develop throughout elementary
school. In fact, the transitive reasoning abil-
ities observed in animals and young children
(using paradigms that involve extensive
training with non-verbal premises) may be
supported by associative learning mechanisms
that have little to do with the type of spatial
representations thought to underlie transitive
reasoning in adults (Frank, 2005; Frank et al.,
2003; Vasconcelos, 2008). Indeed, even in
paradigms that involve five transitive items
(e.g., A>B, B>C, C>D, D>E), the endpoints
(A and E) have asymmetric values in the sense
that A is always the “best” item and E always
the “worst.” It is possible that, with extensive
training and multiple repetitions of the prem-
ises, these asymmetric values transfer to the
adjacent items (Delius & Siemann, 1998;
Frank et al., 2003; von Fersen et al., 1991).
In other words, B might develop a greater
associative value than D because B is associ-
ated with the “best” item (i.e., A) and D is
associated with the “worst” item (i.e., E). The
past reinforcement history for each item might
then underlie the transitive inference when B is
chosen over D in animals and young children
(von Fersen et al., 1991). Even though there is
convincing evidence that transitive reasoning
in adults relies on a representation of items
along a spatial continuum, this strategy may
not be readily available to young children
(who might instead rely on associative learning
mechanisms facilitated by a repeated expos-
ition to premises). Thus, the development of
transitive reasoning might be characterized by
a transition from the use of associative learn-
ing mechanisms to a reliance on spatial
ordering mechanisms in the IPS. Overall, both
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numerical processing and transitive reasoning
may be characterized by an increase in special-
ization of the IPS for the representation of
ordered information (Prado et al., 2010).

27.2 Analogical Reasoning

Broadly defined, analogical reasoning is the
ability to reason with relational patterns
(English, 2004). More specifically, analogical
reasoning involves abstracting relational
patterns and applying them to new entities.
A conventional analogy typically takes the
form “A is to B as C is to D” (this is formalized
“A:B::C:D”) and involves a mapping between
some source items (i.e., A and B) and some
target items (i.e., C and D). Consider for
example the analogy in (3):

(3) Automobile is to gas as sailboat is to?

Solving this analogy first requires reasoners to
extract a relational pattern between two items,
“automobile” and “gas” (i.e., A and B), before
applying this pattern to a third item, “boat”
(i.e., C). A probable conclusion can then be
generated, i.e., “wind” (i.e., D). In (3), the
relation between A and B (“powered by”) is
causal but relatively abstract. This makes the
analogy more difficult than if it was based on a
relation of physical similarity. Consider for
example how the solution “melted snowman”
comes naturally from the analogy in (4):

(4) Chocolate bar is to melted chocolate as
snowman is to?

Therefore, much like transitive reasoning, ana-
logical reasoning requires relational process-
ing. Unlike transitive reasoning, however, the
solution of an analogy does not follow out of
necessity from the available information. It
can only be supported with varying degrees
of strength (Bartha, 2013). In that sense, ana-
logical reasoning belongs to the category of
inductive reasoning.

Analogical reasoning plays a fundamental
role in creativity (Holyoak & Thagard, 1995).
As such, analogies have supported a number of
important mathematical discoveries over the
course of history (Polya, 1954). Consider for
example how the famous mathematician Jean
Bernoulli used an analogy with the path of the
light to solve a classical problem in calculus
of variation (the brachistochrone problem)
(Polya, 1954; Sriraman, 2005). But analogical
reasoning is not only relevant to expert math-
ematicians when solving complex problems. It
is also a critical skill which young children and
adolescents may rely on when learning math-
ematics and solving problems (for a neo-
Piagetian theory on analogy through mapping
structures in higher cognition, see Halford,
1992; Halford et al., 2010). For example, sup-
pose that some students have used calculus to
demonstrate that of all the rectangles with a
given perimeter, the one with the greatest area
is a square. These students may then infer that
of all the boxes with a given surface area, the
one with the greatest volume is a cube (Bartha,
2013). This is an example of an analogy in
which students recognize a mapping (i.e., a
similarity in relational structure) between a
source problem (with rectangles and squares)
and a target problem (with boxes and cubes).
Younger children also rely on analogical
reasoning when they are faced with pictorial
representations (e.g., pizza slices, number lines)
and manipulative materials (e.g., counters,
blocks, rods). These have been termed “math-
ematical analogs” because they also essentially
require children to recognize a structural
relation between a source (i.e., the pictorial
representation of manipulative) and a target
(i.e., the mathematical concept to be acquired)
(English, 2004). Finally, a relatively under-
appreciated fact is that teachers commonly
use analogies in the classroom to illustrate
concepts and procedures (Richland et al.,
2004; Richland & Simms, 2015). In other
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words, analogies are at the heart of mathemat-
ics teachers’ practices. There are many
examples of such analogies. For instance,
teachers may use the analogy of balancing a
scale to illustrate how two sides of an equation
should be equal. They may also use real world
situations involving the manipulation of coins
or candies to illustrate additive and subtractive
concepts (Richland et al., 2004). Overall, there
is no doubt that analogical reasoning plays a
central role in mathematical learning, both
from a learner’s and a teacher’s perspective.

Several cross-sectional and longitudinal
studies indicate that analogical reasoning is
related to mathematical development (Fuchs
et al., 2005; Green et al., 2017; Primi et al.,
2010; Taub et al., 2008). For instance, Fuchs
et al. (2005) found that measures of geometric
proportional analogies (i.e., sometimes called
“matrix reasoning”) at the beginning of first
grade were related to math outcomes later
during the year. Green et al. (2017) further
found that a compound measure of relational
reasoning (including matrix reasoning) pre-
dicted mathematical skills eighteen months
later in children and adolescents. Primi et al.
(2010) also demonstrated that verbal and
spatial analogical reasoning skills were related
to growth of mathematical skills from seventh
to eighth grade.
Some important support for a foundational

role of analogical reasoning in mathematical
learning comes from the literature on “pattern-
ing,” that is, the ability to extract a relational
pattern within a given sequence in order to
apply this pattern to another sequence (which
could have different surface features)
(Burgoyne et al., 2017; Rittle-Johnson et al.,
2018). In a standard patterning task, children
might be presented with alternating shapes of
the same color, such as star–circle–star–circle.
Children may then be given a set of red and
blue squares and be asked to generate a similar
pattern. If the pattern from the sequence of

shapes is correctly extracted (i.e., A–B–A–B),
children can infer the correct sequence of
squares of different colors (i.e., red–blue–red–
blue). Therefore, a patterning task requires
children to recognize the similarity in rela-
tional structure (or mapping) between an ini-
tial (or source) sequence and a final (or target)
sequence. As such, analogical reasoning skills
are fundamental to patterning tasks. Cross-
sectional and longitudinal studies have found
a relationship between patterning performance
and mathematical skills (Lee et al., 2011;
Pasnak et al., 2016; Rittle-Johnson et al.,
2016; Vanderheyden et al., 2011). For
instance, Rittle-Johnson et al. (2016) demon-
strated that patterning knowledge when chil-
dren are in first grade predicts their
mathematics achievement in fifth grade, inde-
pendently of a number of cognitive abilities
and mathematical skills.
Overall, there is considerable evidence sup-

porting the role of analogical reasoning in
mathematical development. As mentioned in
the previous paragraphs of this section, how-
ever, analogies are not only used by learners
but are also frequently employed by teachers to
explain concepts and procedures. Interestingly,
there is evidence that the quality of analogy-
based instructions varies between teachers and
that this has an influence of mathematical
learning. This is suggested by a cross-cultural
comparison of practices in the mathematics
classroom (Richland et al., 2007). The authors
analyzed videotapes of mathematics teachers in
the United States as well as in two Asian
regions in which students significantly outper-
form American students in international meas-
ures of mathematical attainment: Hong Kong
and Japan. They did not find differences in
terms of frequency of use of analogies by
teachers across the three regions. However,
there were differences in the extent to which
these analogies adhered to principles that
are known to facilitate and enhance the

572 prado and gardes



Comp. by: K.VENKATESAN Stage: Proof Chapter No.: 27 Title Name: HoudeandBorst
Date:27/9/21 Time:12:02:46 Page Number: 573

effectiveness of analogies. For example,
teachers in Hong Kong and in Japan made
greater use of strategies that enhanced the
source of the analogy as compared to teachers
in the United States, thereby reducing working-
memory demands for students. These included
the use of a familiar source analog and the use
of visual aids. Analogies from teachers in Hong
Kong and in Japan were also more likely to
adhere to principles that draw attention to the
relational comparison, such as using spatial
cues highlighting the mapping between the
source and target and using gestures and visu-
alizations. Because students in Hong Kong and
Japan typically achieve higher mathematical
skills than children in the United States, the
study suggests that an efficient use of analogies
in the classroom may contribute to mathemat-
ical attainment (Richland et al., 2007).
What may be the neurocognitive foundation

of the relationship between analogical
reasoning and mathematical development? Of
course, as is the case for other forms of
reasoning, analogical reasoning may relate to
mathematical skills because both place great
demands on common general cognitive
resources, such as working memory (Waltz
et al., 2000). However, analogical reasoning
is also (like transitive reasoning) a form of
relational reasoning. Thus, it may support
mathematical development because the ability
to understand and manipulate relations is fun-
damental to mathematical knowledge. For
instance, much like transitive reasoning, ana-
logical reasoning has been found to activate
regions in and around the IPS in tasks involv-
ing propositional analogies (Bunge et al., 2005;
Wendelken et al., 2008) and matrix reasoning
(Bunge et al., 2009; Crone et al., 2009;
Dumontheil et al., 2010). A recent meta-
analysis further found that activity associated
with analogical reasoning (and relational
reasoning more generally) in the posterior par-
ietal lobe exhibit greater overlap with brain

activity associated with numerical processing
than with brain activity associated with
working memory, attention, or linguistic pro-
cessing (Wendelken, 2015). This is more con-
sistent with the idea that parietal activity
during analogical reasoning may reflect rela-
tional computations (a process that is involved
in many mathematical tasks) than more gen-
eral working memory or attentional demands.
The IPS, however, is not the only region

involved in analogical reasoning. A large
number of studies have also implicated
a region located at the apex of the frontal
cortex in analogical reasoning, that is, the
rostrolateral prefrontal cortex (RLPFC)
(Bunge et al., 2005; Wendelken et al., 2008;
Wright et al., 2007). The RLPFC and the IPS
may have different functional roles in ana-
logical reasoning. For example, some authors
have proposed that the IPS is specifically
involved in the representation of relations
(Singley & Bunge, 2014). In contrast, the
RLPFC should support the integration of dif-
ferent mental relations (Bunge & Wendelken,
2009; Wendelken et al., 2008). Evidence for
this idea comes from studies showing that the
RLPFC is more active when participants com-
pare the relations between two pairs of words
(i.e., a classic analogy task) than when they
process relations independently from one
another (i.e., when they do not have to com-
pare the relations) (Bunge et al., 2005;
Wendelken et al., 2008). Interestingly, activity
in the RLPFC does not vary with the associa-
tive strength of the relationship between
words, suggesting that it is not involved in
the retrieval of relations per se, but rather in
their integration (Bunge et al., 2005;
Wendelken et al., 2008). These findings on
conventional analogies are consistent with
studies on matrix reasoning, which also point
to increased activity in the RLPFC when mul-
tiple geometric relations have to be considered
jointly (as compared to the processing of one
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single relation) (Dumontheil et al., 2010).
Therefore, neuroimaging studies suggest that
a fronto-parietal network that includes the IPS
(as well as neighboring parietal regions) and
the RLPFC supports analogical reasoning.
It is interesting to note that the RLPFC

develops more slowly than most other brain
regions, only reaching maturity after adoles-
cence (Dumontheil et al., 2008). In line with
this observation, developmental studies have
found increases of activity in the RLPFC (as
well as in the IPS) from childhood to adoles-
cence in analogical reasoning tasks (Crone
et al., 2009; Dumontheil et al., 2010; Wright
et al., 2007). More specifically, the RLPFC
should become increasingly specialized for
higher-order relational processing with age.
For example, Wright et al. (2007) presented
children from six to thirteen years and adults
with visual analogy trials in which participants
had to indicate which of four objects would
complete the problem (“chalk is to chalkboard
as pencil is to?). These trials (in which two
relations have to be compared) were compared
to semantic trials in which participants had to
choose among several objects the one that
was the most closely semantically related to a
cued object. The results indicate age-related
increases of activity in the RLPFC for both
analogy and semantic trials in children. In
contrast, adults showed increased activity
in the RLPFC (as a function of accuracy) in
analogy but not semantic trials. Using another
visual analogy task, Wendelken et al., 2011)
further found that activity in the RLPFC dis-
tinguishes between trials that require a com-
parison between two relations (i.e., an
analogical judgment) and trials that only
require the processing of a single relation in
adolescents. However, no such difference was
found before the age of fourteen years.
Interestingly, that study showed that the
RLPFC and the IPS are interconnected during
the development of analogical reasoning. That

is, the degree of specialization of the RLPFC
for relational integration was associated with
the degree of cortical thinning in the parietal
cortex. Therefore, as pointed out by Singley and
Bunge (2014), structural development in the
parietal lobe promotes RLPFC selectivity for
higher-order problems, perhaps in that a more
mature parietal cortex can complete lower-
order tasks without taxing frontal regions.
Overall, the relatively delayed development

of the brain system supporting analogical
reasoning may explain some of the develop-
ment of analogical reasoning skills in children.
As for transitive reasoning, early findings on
analogical reasoning skills of children come
from Piaget. Piaget presented children with
conventional analogical problems (such as the
one in (3)) in a pictorial form. His main finding
was that young children typically struggle to
solve these problems, often relying on physical
similarities between items rather than on rela-
tions between pairs of items (Inhelder &
Piaget, 1958). This led Piaget to suggest that
children might not be able to solve these types
of problems before the age of eleven or so
(Inhelder & Piaget, 1958). More recently, stud-
ies have found that the ability to solve classic
analogical problems emerge much earlier, to
the extent that children are familiar with the
relations involved (Goswami & Brown, 1989;
Richland et al., 2006; Singer-Freeman, &
Goswami, 2001; Tunteler & Resing, 2002).
For example, children as young as three years
may be able to solve an analogy based on
relations of physical causality, such as the one
in (4) (Goswami & Brown, 1989). However, the
fact remains that young children’s analogical
reasoning abilities are limited and only slowly
improve through childhood and adolescence
(such that only adolescents and adults may be
able to solve the more abstract analogy in (3)).
How can one explain this development?
Clearly, one needs to have knowledge about
the world to abstract relations and reason
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analogically. Therefore, with increasing
knowledge, the relational similarity between
different pairs of items should become increas-
ingly salient (Rattermann & Gentner, 1998;
Vendetti et al., 2015). Of course, because
knowledge about the world increases with
age, this may explain the increase in analogical
reasoning performance with age.2 Another
ability that is likely to be important to
improved analogical reasoning performance is
the capacity to ignore information that is not
relevant to the task, such as the physical simi-
larities between items. Studies have shown that
young children are very susceptible to distract-
ing information in analogical reasoning tasks
(Richland et al., 2006). Inhibiting such infor-
mation is likely to require efficient executive
control skills (including working memory and
inhibition, Houdé, 2000, 2019), which also
increase with age. Overall, the fact that
increases in analogical reasoning performance
with age is characterized by (i) a decrease in
focus of similarities between items and (ii) an
increase in focus on relational information
between pairs of items is often characterized
as a “relational shift” (Rattermann &
Gentner, 1998). Before this relational shift, ana-
logical reasoning remains difficult for young
children. This is especially the case when rela-
tional patterns are more conceptual than per-
ceptual, which is likely to be the case in many
aspects of mathematical learning. Therefore, as
stated by Vendetti et al. (2015, p. 102),
“research suggests that elementary school chil-
dren may need structured guidance when
attempting to make relational comparisons
between domains so that they draw the
intended conclusion from the analogy.”

27.3 Implications for the Classroom:
The Role of Problem-Solving

As is made clear by the literature review in
Section 27.2, there is little doubt that relational

reasoning skills contribute to mathematical
growth in children. Yet, we also reviewed evi-
dence indicating that some of those skills only
slowly develop from early childhood to late
adolescence. Thus, education may play an
important role in scaffolding children’s rela-
tional reasoning abilities throughout the math-
ematics curriculum. An interesting way for
teachers to promote reasoning in the class-
room may be to have children engage in
problem-solving, that is, “the cognitive process
directed at achieving a goal when the problem
solver does not initially know a solution
method” (Mayer & Wittrock, 2006, p. 287).
Indeed, following pioneering work by
Lakatos (1976), Polya (1945), and Schoenfeld
(1985), research in math education has often
suggested that problem-solving may be an
effective way of promoting mathematical
reasoning (Törner et al., 2007). We point to
five reasons for this. First, problem-solving
allows students to apply mathematical know-
ledge and, in doing so, makes learning mean-
ingful (Artigue & Houdement, 2007). For
example, Gibel (2013) argues that solving
problems is a situation in which students have
to engage in reasoning processes, but also have
to assess the validity of these processes.
Second, problem-solving provides a context
in which reasoning may serve different goals.
For example, reasoning may support decision-
making or the development of a general
solving method (starting, for example, from
specific instances). It may also promote argu-
ments regarding the validity and relevance
of the results. Third, problem-solving is an
opportunity for students to encounter different
modes of reasoning (Dias & Durand-Guerrier,
2005; Douek, 2010; Grenier, 2013). For

2 Note, however, that this idea assumes that increases
in performance stem from knowledge acquisition per
se rather than from chronological age.
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example, Gardes and Durand-Guerrier (2016)
have shown that experimental approaches to
mathematics learning may involve both
deductive and inductive reasoning. An
experimental approach to mathematics learn-
ing may also highlight what is a cornerstone
of mathematical thinking, that is, the inter-
play between mathematical knowledge and
heuristic processes (Polya, 1954). Fourth,
problem-solving may encourage proof think-
ing in students (Balacheff, 1988). Finally,
solving problems in the classroom is an ideal
situation for students to engage in scientific
debates, which may be beneficial to
reasoning skills and critical thinking in gen-
eral (Brousseau, 1997; Douek, 2010; Kuhn &
Crowell, 2011).
Problems in the classroom may have differ-

ent learning goals, and therefore may engage
reasoning in different ways. It may be useful
to break down mathematical problems into
three different categories, depending on their
learning goals: problems that focus on acquir-
ing new concepts, problems that focus on
strengthening already acquired concepts, and
problems that focus on promoting investiga-
tive processes in themselves. Whereas the
explicit goal of the first two types of problems
may be to learn and practice some specific
reasoning skills, the last type of problems
may incidentally engage reasoning skills while
students work out the solution of the problem.
Consider for example the problems in (5)
and (6):

(5) A teacher gives children six strips of paper,
each of a different length. The children
have to order these strips from the smallest
to the largest. After they are given the
opportunity to work on the problem, the
teacher points to the fact that one can start
by putting down the smallest of the six
strips, then (next to it) the smallest of the
remaining five strips, and so on.

(6) A teacher gives children several nesting
cups (not nested) and a suitcase.
Children have to store the cups in the
suitcase. Because the suitcase is relatively
small, the only way to store the cups is
to nest them from the smallest to the
largest.

The situation in (5) is an example of a prob-
lem whose explicit goal is to learn a new con-
cept (i.e., serial order), using a particular
technique. In contrast, the goal of the situation
in (6) is merely to investigate and look for a
solution. However, in doing so, children may
apprehend serial order as a relevant reasoning
strategy to solve the problem. Note that, in (5)
as in (6), students can manipulate the materials
to develop some reasoning and come up with a
solution. They implement what can be
described as an “experimental approach,” in
other words, a “back-and-forth between
manipulation of objects and theoretical elab-
orations realized through the articulation of
three processes: experimentation, formulation,
and validation” (Gardes, 2018, p. 83). Such an
experimental approach consists of making
conjectures, testing them, modifying them
and proving those that have withstood the test.
This not only promotes inductive reasoning
when student have to make conjectures, but
also deductive reasoning when those conjec-
tures have to be formally demonstrated
(Polya, 1954).
Although having students to engage in

problem-solving situations may be a pre-
requisite to promote reasoning skills in the
classroom, it may not be sufficient. That is,
for learning to occur, situations may need to
adhere to some criteria. For example, stu-
dents should work on problems by them-
selves, without the teacher’s intervention
(Brousseau, 1997). Problems should also (i)
be challenging, (ii) concern a conceptual
domain that is familiar to the students, and
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(iii) induce neither the solution nor the solving
method. Therefore, teachers should create an
environment that encourages students to
become involved in problem-solving.3 It may
also be beneficial for students to work in small
groups, so that they can express ideas and
explain their reasoning to others. Group work
may also encourage students to take into
account suggestions from others and encour-
age argumentation (Mercier et al., 2017).
Finally, students may take part in debates.
This would expose them to alternative per-
spectives and force them to engage in a pro-
cess of formulation and validation of their
solutions. Overall, a growing body of litera-
ture suggests that group discussions can be a
very efficient way to increase reasoning per-
formance in children and adults (Mercier &
Sperber, 2011).
There area variety of scenarios in which

students may engage in problem-solving, while
taking into consideration all of the factors
mentioned. However, just to give an example,
suppose that (in a first session) students are
split into small groups and given some time
to solve a mathematical problem (without any
intervention from the teacher). The teacher
may then ask them to prepare a poster.
A follow-up session may then be devoted to
the presentation of these posters, as well as to
collective discussions through a scientific
debate (Arsac & Mante, 2007). Although this
situation is just one among many possible
scenarios, regular use of such problem-solving
sessions in the classroom may help foster
reasoning skills.
In Sections 27.3.1–27.3.3, we give some

examples of problems that may teach transi-
tive and analogical reasoning in young
children. We then give an example of a prob-
lem in which both deductive and inductive
reasoning are incidentally used when working
out the solution.

27.3.1 Learning to Reason with
Transitive Relations

Suppose that children are given the following
instructions: “James is a tamer of big cats for a
circus. James would like his cats to walk in line
one behind the other. Can you help James
keep his animals in line using the information
provided?” (see Figure 27.1).

In order to successfully solve this problem,
children must understand the transitive rela-
tions in the information provided. For
example, from the first two sentences, children
can infer the order lion, tiger, and cheetah. The
cheetah can then be placed in the second to last
position and a possible solution (or all possible
solutions) can be proposed. It is easy to change
the problem by changing some didactic vari-
ables (Brousseau, 1997): the number of
animals, the number of constraints, the order
of information, the number of correct solu-
tions or the question asked. For example,
explicitly asking who follows the lion would
force children to use transitive reasoning.
Overall, problems such as these may help show
children how serial orders can be constructed
from transitive relations. They can be solved
by children individually or in groups, and even
involve materials such as toy animals.

27.3.2 Learning to Reason by Analogy

In a typical patterning problem, children have
to describe and reproduce a given alternating
sequence (e.g., AABBAABB) using different
sets of materials. For instance, children may
be presented with a sequence made of alternat-
ing white and black diamonds. They are then

3 By environment, we mean everything that may
promote effective learning: material or non-material
objects, state of current knowledge, documents,
organization of interactions, etc. (Brousseau, 1997).
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presented with an empty grid and given the
following instructions: “Look carefully at the
design I gave you. When you are done looking
at it, hide it. Then, try to reproduce that design
on the grid, with your tokens. When you think
you are done, compare your design with the
one I gave you” (see Figure 27.2). Children
may work on such problems alone.
In order to successfully solve such a pattern-

ing problem, students need to notice what is
unique about the design (i.e., the alternating
sequence), so they can replicate it. Children
who recognize the alternating pattern of two
black diamonds and two white diamonds will
succeed in reproducing the sequence with the
same set of materials (black and white dia-
monds) but may also abstract the sequence if
given a different set of materials (e.g., blue and
yellow squares). In other words, several didac-
tic variables can be manipulated, such as the
pattern, the number of different tokens (shape
and/or color), the initial design viewing time,

the presence of a grid, etc. The teacher may
also encourage children to explicitly formulate
the pattern by asking them to tell other chil-
dren how to make the design.
The two problem-solving situations described

here explicitly aim to teach relational reasoning.
But even problems that may not necessarily be
used to explicitly teach reasoning (e.g., prob-
lems that are used to promote investigative
behavior) may encourage students to reason.
For instance, these problems may highlight
the difference between inductive reasoning
(e.g., analogical reasoning) and deductive
reasoning (e.g., transitive reasoning). An
example of one such problem is given here.

27.3.3 Learning to Investigate: The
Interplay between Inductive and
Deductive Reasoning

Consider the following scenario (Aldon et al.,
2017):

Lion             Cougar               Cheetah

Panther              Tiger                     Lynx

The tiger follows the lion.

The cheetah follows the tiger.

The lynx follows the panther and is right in front of 

the lion.

The cheetah is second to last.

The cougar is not first.

Figure 27.1 Example of materials used in the problem about transitive relations
A black-and-white version of this figure will appear in some formats. For the color
version, please refer to the plate section.

Figure 27.2 Example of materials used in the patterning problem

578 prado and gardes



Comp. by: K.VENKATESAN Stage: Proof Chapter No.: 27 Title Name: HoudeandBorst
Date:27/9/21 Time:12:02:47 Page Number: 579

(7) When two points are on a circle, the line
joining them defines two areas within the
disk. How about with three points? four
points? and n points? What is the maximum
number of areas possible within the disk?

A first step toward solving this problem
often consists of drawing lines with the first
few values of n. Figure 27.3 displays the
number of areas corresponding to values of n
from two to five.
One method that can be used to explain this

surprising result is to come up with a formula
after having systematically studied and enu-
merated several geometric configurations. For
example, at the very beginning, there is only
one point on the circle and only one area (i.e.,
the whole disk). Drawing another point (n = 2)
adds a line, which itself adds an area (see
Figure 27.3). Therefore, when n = 2, there is
one line and two areas. With n = 3, there are
three lines and each line adds one area. Thus,
there are 1 + 3 = 4 areas. Students may then
start to hypothesize that counting the areas is
equivalent to counting the lines. In other
words, it amounts to counting the combin-
ations of two out of n points, i.e.,
n
2

� �
¼ n n�1ð Þ

2 . With n = 4, however it becomes

clear that this reasoning is insufficient. Indeed,
there is one additional region every time two
lines intersect. In fact, there are as many points
of intersection as there are quadrilaterals
whose corners are among the n points on the
circle, that is, the number of combinations of

four points among n: n
4

� �
¼ n n�1ð Þ n�2ð Þ n�3ð Þ

4! :

From this observation, students can derive
the general formula of the maximum number
of regions determined by n points on the circle:

1 + n
2

� �
þ n

4

� �
¼ 1þ n n�1ð Þ

2 þ n n�1ð Þ n�2ð Þ n�3ð Þ
4! :

Overall, this situation illustrates the necessary
interplay between inductive and deductive
reasoning. Inductive reasoning is useful to make
progress when looking for the solution of a
problem. For example, it can be used to make
conjectures. However, inductive reasoning does
not always make it possible to validate the solu-
tion. Here, for instance, studying the geometric
configuration with n = 6 makes it clear that the
conjecture is wrong. But it does not explain why.
Students need to use deductive reasoning when
systematically studying how areas are added
when points are drawn on the circle. This makes
it possible to (i) find the correct solution given by
a formula and (ii) demonstrate this formula.

Figure 27.3 Examples of line configurations with different values of n in the geometry problem. For
n = 2 there are two areas, for n = 3 there are four areas, for n = 4 there are eight areas, and for n = 5
there are sixteen areas. From these observations, students may use inductive reasoning to make the
following conjecture: For n points on the circle, the number of areas is 2n�1. However, perseverant
students will realize that drawing lines with n = 6 leads to thirty-one areas (instead of thirty-two areas)!
Thus, the formula must be incorrect
A black-and-white version of this figure will appear in some formats. For the color version, please refer to the
plate section.
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27.4 Conclusion

Over the past decades, the literature on math-
ematical cognition has largely focused on the
idea that primitive intuitions about quantities
serve as a foundation for symbolic mathemat-
ics. This has notably led to the development of
theories emphasizing how individual differ-
ences in the quality of magnitude representa-
tions affect math learning (Feigenson et al.,
2013). Although this focus has allowed for sig-
nificant progress to be made in the field, it is
also clear that mathematical skills are wide
ranging and go beyond basic representations
of numerical magnitudes. In other words,
mathematical skills are likely to involve mul-
tiple cognitive processes and representations.
In the present chapter, we argue that the ability
to understand and integrate relations is central
to the development of mathematical skills. We
have reviewed research indicating that such
relational reasoning skills may be present early
in development, but also considerably improve
from childhood to adolescence. Thus, math-
ematics teachers may have an important role
to play in nurturing relational reasoning skills
in children. To reach this educational goal,
they may use problem-solving situations in
which students are confronted to different
forms of relational reasoning as well as to the
fundamental difference and complementarity
between induction and deduction.
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