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A B S T R A C T   

A large body of evidence suggests that math learning in children is built upon innate mechanisms for repre-
senting numerical quantities in the intraparietal sulcus (IPS). Learning math, however, is about more than 
processing quantitative information. It is also about understanding relations between quantities and making 
inferences based on these relations. Consistent with this idea, recent behavioral studies suggest that the ability to 
process transitive relations (A > B, B > C, therefore A > C) may contribute to math skills in children. Here we 
used fMRI coupled with a longitudinal design to determine whether the neural processing of transitive relations 
in children could predict their current and future math skills. At baseline (T1), children (n ¼ 31) processed 
transitive relations in an MRI scanner. Math skills were measured at T1 and again 1.5 years later (T2). Using a 
machine learning approach with cross-validation, we found that activity associated with the representation of 
transitive relations in the IPS predicted math calculation skills at both T1 and T2. Our study highlights the po-
tential of neurobiological measures of transitive reasoning for forecasting math skills in children, providing 
additional evidence for a link between this type of reasoning and math learning.   

1. Introduction 

The ability to understand and manipulate logical relations has long 
been thought to be associated with the acquisition of math skills in 
children. For instance, the pioneering developmental psychologist Jean 
Piaget famously proposed that the development of math cognition relies 
on the emergence of logical skills from childhood to adolescence (Piaget, 
1952). Educational policies have also often been influenced by the idea 
that learning math would contribute to the development of logical 
thinking in children, a claim whose premises can be found in the writ-
ings of philosophers such as Plato, Locke, and Bacon (Inglis and Attridge, 
2017). To date, however, evidence that math learning is related to 
logical reasoning remains scarce, most likely because research has 
largely focused on investigating to what extent math development relies 
on evolutionally old mechanisms for representing quantities (Feigenson 
et al., 2004). 

Yet, mathematical development is about more than simply process-
ing quantitative information. It is also about understanding relations 
between those quantities and making inferences based on these 

relations. For example, a type of logical relation that is prevalent in 
many math domains is that of transitivity. Transitivity is a property that 
arises from a set of items that can be ordered along a single continuum 
(Wright, 2001). A relation is said “transitive” when it allows reasoners to 
infer a relationship between two items (e.g., A > C) from two other 
overlapping pairs (e.g., A > B; B > C). The ability to recognize transitive 
relations and make associated inferences may contribute to the acqui-
sition of many mathematical concepts. For example, transitive reasoning 
is fundamental to the acquisition of measurement skills in children 
(Inhelder and Piaget, 1958; Bryant and Kopytynska, 1976; Rabinowitz 
and Howe, 1994). It also allows for the processing of ordinal and cate-
gorical information, which in turn contributes to domains such as 
arithmetic, algebra and geometry (Bryant and Kopytynska, 1976; 
Rabinowitz and Howe, 1994; Wright, 2001). 

Consistent with a role for transitive reasoning in math learning, a few 
studies have shown that the ability to understand transitive relations 
relate to math skills in children. For example, Morsanyi et al. (2013) 
found that 10-year-olds with math learning disability (i.e., dyscalculia) 
performed significantly worse than typically developing controls in a 
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transitive reasoning task. In contrast, children with high math ability 
performed significantly better than typically developing controls on that 
same task. This is in line with a prior report showing that math perfor-
mance is generally related to transitive (as well as conditional) 
reasoning ability in elementary school children (Handley et al., 2004). 

What neural mechanisms may underlie the relationship between 
transitive reasoning and math learning in children? Two lines of evi-
dence suggest that this relationship may be mediated by brain mecha-
nisms involved in relational processing in the posterior parietal cortex 
(Wendelken, 2015). First, neuroimaging studies indicate that the pro-
cessing of transitive relations consistently activates the intraparietal 
sulcus (IPS) (for a review, see Prado et al., 2011a), a region that is also 
typically involved in tasks that require the manipulation of numbers 
(Nieder and Dehaene, 2009). Arguably, both transitive reasoning and 
numerical cognition require individuals to process ordinal information. 
Therefore, this common reliance on IPS mechanisms may stem from the 
fact that this region is central to ordinal processing more generally, in 
line with studies showing that the IPS is also activated when participants 
represent learned series such as letters, days or months (Fias et al., 
2007). 

However, it is also possible that transitive relations and numbers are 
encoded in similar regions of the IPS because they both rely on repre-
sentations that are inherently spatial and for which the posterior parietal 
cortex is key (Prado et al., 2010a, 2010b). For example, numbers are 
often thought to be represented on a mental number line (Hubbard et al., 
2005) in adults and children. This is notably suggested by the behavioral 
distance effect observed in number comparison tasks (i.e., reaction times 
decrease with the distance between numbers; Moyer and Landauer, 
1967), indicating that numbers that are close (e.g., 4 vs 5) are more 
difficult to distinguish than numbers that are far (e.g., 2 vs 8). This 
phenomenon has also been reported in transitive reasoning (i.e., reac-
tion times decrease with the distance between items in a transitive 
ordering task; Prado et al., 2010a, 2010b), suggesting that transitive 
items are also arranged on a mental representation of space (Alfred 
et al., 2018). Furthermore, activity in the same region of the IPS has 
been found to decrease with the distance between numbers (Pinel et al., 
2001; Pinel et al., 2004; Mussolin et al., 2010) and transitive items 
(Prado et al., 2010a), suggesting that transitive relations and numbers 
engage common spatial representations in the IPS. 

A second line of evidence suggesting that the relationship between 
transitive reasoning and math learning may be mediated by the poste-
rior parietal cortex is provided by a recent neuroimaging study. In that 
study, we contrasted brain activity of typically developing children to 
brain activity of children with math learning difficulties during a tran-
sitive reasoning task. While transitive relations were associated with IPS 
activity in typically developing children, that was not the case in chil-
dren with math learning difficulty (Schwartz et al., 2018). Children with 
math learning difficulty also showed significantly less activity in the IPS 
than typically-developing children during the transitive reasoning task. 
Thus, the extent to which IPS mechanisms process transitive relations 
may be related to levels of math competence in children. 

It is important to note that our previous study only provides indirect 
correlational evidence that math abilities may be associated with 
reasoning-related activity in the IPS. However, it raises an intriguing 
possibility that may strengthen the claim that transitive reasoning plays 
an important role in math learning: current and future math skills in 
children might be predicted (at least to some extent) by the neural 
processing of transitive relations in the IPS. The goal of the present study 
was to formally test this hypothesis. FMRI activity of 31 typically- 
developing children from 9 to 13 was measured while they passively 
listened to transitive (e.g., A > B, B > C) and non-transitive (e.g., A > B, 
C > D) relations that were embedded in a coherent story that was 
designed to be as interactive (it took the form of a “choose your own 
adventure story”) and as engaging as possible (Schwartz et al., 2018). 
This task allowed us to measure activity associated with transitive 
relation in a relatively ecological context (i.e., discourse 

comprehension). Arithmetic and math problem-solving abilities were 
measured for each child at the time of the fMRI session (T1), as well as 
1.5 years later (T2). The predictive power of the neural representations 
of transitive relations in the IPS on current and future math skills was 
assessed using a machine learning approach with cross-validation 
(Gabrieli et al., 2015). Specifically, we evaluated whether multivariate 
patterns of IPS activity associated with the processing of transitive re-
lations (as compared to non-transitive relations) at T1 could accurately 
predict math scores of children at both T1 and T2. 

2. Material and methods 

2.1. Sample size justification 

To our knowledge, this is the first study to examine the link between 
individual differences in math skills and the neural processing of tran-
sitive relations in typically developing children. For this reason, and 
because decoding accuracy in multivariate analyses may not reflect ef-
fect sizes (Hebart and Baker, 2018), it is difficult to determine the 
optimal sample size for the multivariate analyses. However, we note that 
previous studies that have used multivariate analyses to predict math 
skills in children have used sample sizes ranging from n ¼ 20 (Evans 
et al., 2015) to n ¼ 28 (Qin et al., 2015). Power calculations (performed 
with G*Power, https://stats.idre.ucla.edu/other/gpower/) indicate that 
such sample sizes would provide 80% power to detect a univariate 
brain-behavior correlation in the r ¼ 0.5 to r ¼ 0.6 range (with α ¼ 0.05). 
Such a range is typically the one observed in most studies measuring 
univariate brain-behavior correlations (providing that regions in which 
correlations are observed are not selected from circular analyses; see 
Fig. 5 in Vul et al., 2009). Therefore, we aimed to analyze a sample size 
of around 28 participants in the present study (similar to Qin et al. 
(2015)). Because we expected to discard about 20% of participants due 
to technical, performance, or movement issues, we aimed to recruit 
around 35 participants. 

2.2. Participants 

Thirty-eight right-handed children from 8 to 13 were recruited using 
advertisements in schools, newspapers and social media. Seven of these 
participants were excluded from the analyses because of excessive head 
motion in at least 3 of the 4 fMRI runs (n ¼ 4), presence of a specific 
language impairment (n ¼ 1), and lack of behavioral data (n ¼ 2). Thus, 
31 children were included in the analyses. Eighteen of these participants 
were already analyzed in Schwartz et al. (2018), in which only univar-
iate analyses were used at T1 to compare brain activity associated with 
transitive reasoning between children with and without math learning 
difficulty. The mean age of the final sample was 10.97 years (SD ¼ 1.37) 
at T1 and 12.57 years (SD ¼ 1.39) at T2. All children were native French 
speakers and had no diagnosis of mental retardation or high intellectual 
potential. They also had no hearing deficit, no MRI contraindications 
and no history of neurological and psychiatric disorder. Parents gave 
their written informed consent and children gave their assent to 
participate in the experiment, which was approved by the local ethics 
committee (CPP Lyon Sud-Est II). Families were paid 80 euros for their 
participation. 

2.3. Testing 

To ensure that participants had normal cognitive functioning and to 
provide a means of measuring math skill, children completed stan-
dardized tests at the time of scanning (T1) and after a follow-up period of 
between 1.45 and 1.79 years (T2) (mean ¼ 1.60 years, SD ¼ 0.07). First, 
the Nouvelle Echelle Metrique de l’Intelligence (NEMI-2) (Cognet, 
2006) was used to obtain a measure of verbal intelligence (estimated 
using subtests of general knowledge, vocabulary and comparisons) and 
matrix reasoning at T1. Second, math skills were measured at both T1 
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and T2 using a French version of the Woodcock-Johnson Test of 
achievement (WJ III; Woodcock et al., 2001). To provide a compre-
hensive measure of math abilities in each individual, 3 subtests were 
used: Calculation, Math fluency, and Applied problems. The Calculation 
subtest is an untimed test in which participants perform math compu-
tations of increasing difficulty. The test begins with single-digit addition, 
subtraction and multiplication problems and progressively moves to 
double-digit problems (including division) and algebra, as well as log-
arithmic and trigonometric operations. Test administration is stopped 
after six consecutive errors or when the last item is reached (raw scores 
range from 0 to 45). In the Math fluency subtest, participants have 3 min 
to solve as many single-digit addition, subtraction and multiplication 
problems (raw scores range from 0 to 160). The Applied problems 
subtest measures the ability to analyze and solve math problems. While 
early items require application of basic numerical concepts (e.g., 
counting, performing simple addition and subtraction, reading clocks 
and coin values), most items require children to understand and analyze 
word problems. The test is untimed and testing stops after 6 consecutive 
errors or when the last item is reached (raw scores range from 0 to 63). 
Standardized IQ scores at T1 and raw math scores at T1 and T2 are shown 
in Table 1. 

2.4. Task 

Participants completed the task described in Schwartz et al. (2018). 
In the scanner, they listened to 4 stories that each included a series of 12 
short scenarios (see Table 2). Each scenario ended up with a question 
that the child had to answer. Similar to a “choose your own story” 
structure, children were told to pay attention to every scenario because 
their responses to questions were critical for making progress in the 
story. Scenarios varied with respect to the type of relations involved. 
Twenty-four scenarios included linear-order relations such as “A is more 
than B”, while 24 scenarios included set-inclusion relations such as “All 
As are Bs”. In half (i.e., 12) of each type of scenario, the relations 
overlapped so that they could be integrated, and a conclusion could be 
inferred. For instance, the linear-order relations “White cows give more 
milk than black cows” and “Black cows give more milk than brown 
cows” in the bottom left cell of Table 2 should lead to the conclusion that 
“White cows give more milk than brown cows”. Similarly, the 
set-inclusion relations “All old farms are made of stone” and “All farms 
that are made of stone are uphill” in the top left cell of Table 2 should 
lead to the conclusion that “All old farms are uphill”. The question that 
followed scenarios with such transitive relations always tested whether 
children had inferred conclusions upon listening to the scenario (it was 

termed Reasoning question). The remaining scenarios included 
non-transitive relations, that is, relations that were not overlapping. 
Thus, no particular conclusion could be inferred upon listening to the 
scenario. For instance, the linear-order relations “The chocolate cake is 
baking faster than the apple pie” and “The strawberry pie is baking faster 
than the cheesecake” in the bottom right cell of Table 2 are 
non-transitive. Similarly, the set-inclusion relations “All bedrooms with 
a red door are on the side of the chicken coop” and “All bedrooms with a 
green door are on the side of the barn” in the top right cell of Table 2 are 
non-transitive. In those cases, the question that followed simply tested 
whether children remembered some information that was explicitly 
given in the scenario and was termed Memory question (see Table 2). 

Overall word count was controlled across the 4 types of scenarios. On 
average, word count was 69.1 for scenarios with transitive set-inclusion 
relations, 69.7 for scenarios with non-transitive set-inclusion relations, 
73.6 for scenarios with transitive linear-order relations and 72.4 for 
scenarios with non-transitive linear-order relations. Because word count 
was not normally distributed, non-parametric testing was used to assess 
differences as a function of type of scenarios. A Kruskal-Wallis ANOVA 
indicated that word count did not differ between types of scenarios 
(H(3,48) ¼ 4.14, p ¼ 0.25). 

The task was split into 4 runs that contained one story each. Each 
story contained 3 scenarios with transitive linear-order relations, 3 

Table 1 
Demographic information and measures of verbal IQ, reasoning 
(matrices) abilities and math skills.  

Variable Mean (SD) 

Demographic information 
Age at T1 (in years) 10.97 (1.37) 
Age at T2 (in years) 12.57 (1.39) 

Verbal IQ (NEMI-II) 
General knowledgea 105.85 (20.4) 
Vocabularya 106.75 (18.45) 
Comparisona 112.15 (21.75) 

Matrix reasoning (NEMI-II) 
Raven’s matricesa 105.85 (20.85) 

Math skills (WJ-III) 
Calculation (T1)b 18.90 (3.82) 
Math fluency at (T1)b 51.16 (17.43) 
Applied problems at (T1)b 37.23 (5.33) 
Calculation (T2)b 22.03 (5.18) 
Math fluency at (T2)b 62.97 (16.36) 
Applied problems at (T2)b 40.03 (6.04) 

Notes. 
a , standardized scores (M ¼ 100, SD ¼ 15). 
b , raw scores. 

Table 2 
Examples of each type of scenario (translated from French).   

Transitive relations Non-transitive relations 

Set-inclusion 
relations 

1. S1. “You are going on 
vacation to the countryside.” 
S2. “You are planning to stay in 
a farm for a few days.” 
S3. “There are farms uphill and 
downhill.” 
S4. “All old farms are made of 
stone.” 
S5. “All farms that are made of 
stone are uphill.” 
S6. “You have to find an old 
farm.” 
Q. Reasoning question: “Are you 
going uphill (response 1) or 
downhill (response 2)?” 

2. S1. “You are going uphill and 
you find the old farm. (response 
1)”/“You are going downhill 
and the farmers pick you up” 
(response 2) 
S2. “The farmers invite you in.” 
S3. “You need to bring your bag 
to your bedroom on the 2nd 
floor.” 
S4. “All bedrooms with a red 
door are next to the chicken 
coop.” 
S5. “All bedrooms with a green 
door are next to the barn.” 
S6. “The farmers’ house is very 
big.” 
Q. Memory question: “Are you 
taking your bag to the 3rd floor 
(response 1) or to the 2nd floor 
(response 2)?” 

Linear-order 
relations 

4. S1. “You are taking the 
pastries out of the oven.” 
(response 1)/“You let the 
pastries in the oven and they are 
overbaked” (response 2). 
S2. “You would like some milk 
for your breakfast.” 
S3. “You are going to milk cows 
with the farmer.” 
S4. “White cows give more milk 
than black cows.” 
S5. “Black cows give more milk 
than brown cows.” 
S6. “You need to milk the cows 
giving the most milk.” 
Q. Reasoning question: “Are you 
milking the brown cows (response 
1) or the white cows (response 
2)?” 

3. S1. “You are going to the 2nd 
floor and bring your bag in.” 
(response 2)/“You are going to 
the 3rd floor and the farmers 
tell you to go down to the 2nd 
floor.” (response 1) 
S2. “The next morning, the 
farmer is baking pastries.” 
S3. “The farmer is asking you to 
take them out of the oven now.” 
S4. “The chocolate cake is 
baking faster than the apple 
pie.” 
S5. “The strawberry pie is 
baking faster than the 
cheesecake.” 
S6. “It is very hot in the 
kitchen.” 
Q. Memory question: “Are you 
taking the pastries out of the oven 
now (response 1) or later 
(response 2)?” 

Notes. Numbers 1 to 4 (bold) indicate the order of presentation within the 
experimental run. The labels S1 to S6 indicate sentence number for each 
scenario. 
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scenarios with non-transitive linear-order relations, 3 scenarios with 
transitive set-inclusion relations and 3 scenarios with non-transitive set- 
inclusion relations. Two wrap-up sentences concluded each story. Runs 
were randomized but scenarios were presented in a fixed order within a 
run. This was because scenarios were embedded in a coherent story. 
However, two scenarios of the same type were never following each 
other. Additionally, responses were counterbalanced across different 
variables. First, the order of the correct response was counterbalanced 
between the 4 types of stories across the whole experiment. Second, 
within a run, the order of the correct response was counterbalanced 
between scenarios with transitive and non-transitive relations and be-
tween scenarios involving linear-order relations and set-inclusion re-
lations. Third, to prevent participants from developing expectations 
during the task and using heuristic strategies to respond to Reasoning 
questions, transitive relations were switched around in half of the 
problems. For example, linear-order relations could be presented in the 
order “A is faster than B and B is faster than C” in some scenarios and in 
the order “B is faster than C and A is faster than B” in other scenarios. 
Participants were instructed to press on a response button when they 
were ready to hear the next sentence. They were told to press on one of 
two other response buttons to choose between options in the question. 
Each story started with a red fixation cross at the center of the screen. 
The red cross turned orange after 6 s and green after 2 s. The green cross 
lasted 2 s and was immediately followed by the presentation of the first 
sentence of the first scenario. There was a 500 ms interval between each 
sentence in a scenario. A white fixation cross was displayed before and 
after each question for a random duration between 2 and 4 s. A fixation 
cross was also displayed for 20 s at the end of each story. See Fig. 1 for a 
timeline of one scenario. 

2.5. Experimental procedure 

After standardized tests were administered at T1, children were 
familiarized with the fMRI environment in a mock scanner. They 
listened to a recording of the noises associated with all fMRI sequences. 
A motion tracker system (3D Guidance trak STAR, Ascension Technol-
ogy Corporation) was used to measure head movements and provide on- 
line feedback to participants. Finally, children practiced the task in that 
mock scanner. Different stimuli were used in the practice and in the 
scanning sessions. Stimuli were generated using Presentation software 
(Neurobehavioral Systems, Albany, CA). Stories were spoken through 

headphones sentence by sentence. During each scenario, a black-and- 
white picture illustrating the setting was displayed on a computer 
screen that was viewed by the participants through a mirror attached to 
the head coil. Behavioral responses were recorded using MR-compatible 
keypads placed in the left and right hands. 

2.6. fMRI: data acquisition 

Images were collected with a Siemens Prisma 3T MRI scanner 
(Siemens Healthcare, Erlangen, Germany) at the CERMEP Imagerie du 
vivant in Lyon, France. The BOLD signal was measured with a suscep-
tibility weighted single-shot Echo-planar Imaging (EPI) sequence. Im-
aging parameters were as follows: TR ¼ 2000 ms, TE ¼ 24 ms, flip angle 
¼ 80�, matrix size ¼ 128 � 120, field of view ¼ 220 � 206 mm, voxel 
size ¼ 1.72 � 1.72 mm, slice thickness ¼ 3 mm (0.48 mm gap), number 
of slices ¼ 32. A high-resolution T1-weighted whole-brain anatomical 
volume was also collected for each participant. Parameters were as 
follows: TR ¼ 3500 ms, TE ¼ 2.24 ms, flip angle ¼ 8�, matrix size ¼ 256 
� 256, field of view ¼ 224 � 224 mm, voxel size ¼ 0.87 � 0.87 mm, slice 
thickness ¼ 0.9 mm, number of slices ¼ 192.” 

2.7. fMRI: data preprocessing 

Images were analyzed with SPM12 (Welcome department of Cogni-
tive Neurology, London, UK). The first 4 images of each run were dis-
carded to allow for T1 equilibration effects. Functional images were 
corrected for slice acquisition delays and spatially realigned to the first 
image of the first run to correct for head movements. Realigned images 
were smoothed with a Gaussian filter (4 � 4 � 8 mm full-width at half 
maximum). As in our previous studies (Schwartz et al., 2017; Mathieu 
et al., 2018; Schwartz et al., 2018), volumes showing rapid scan-to-scan 
movement greater than 1.5 mm were identified using ArtRepair 
(Mazaika et al., 2009). Those were removed and replaced by the inter-
polation of the 2 nearest non-repaired volumes. Runs with more than 
10% of repaired volumes were excluded from the analysis. Finally, 
functional images were normalized into the standard Montreal Neuro-
logical Institute (MNI) space. 

2.8. fMRI: statistical modeling 

Statistical modeling was performed in the context of the General 

Fig. 1. Timeline for a sample scenario. Each 
of the 6 sentences (S) was spoken through 
headphones while a picture was displayed 
on the screen. The task was entirely self- 
paced. Participants pressed on a button to 
indicate that they were ready to listen to the 
next sentence, which was spoken after a 500 
ms delay (not shown). The scenario ended 
with a question (Q), which was also spoken 
through headphones. This question was 
preceded and followed by a jittered interval 
ranging from 2 to 4 s. The sentences of in-
terest considered in the analyses were sen-
tences 4 to 6 (in red). (For interpretation of 
the references to colour in this figure legend, 
the reader is referred to the Web version of 
this article.)   
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Linear Model, using the exact same procedure as in Schwartz et al. 
(2018). Sentences of interest were those containing transitive and 
non-transitive relations (i.e., sentences 4 and 5). These sentences were 
modeled as epochs with onsets time-locked to the presentation of sen-
tence 4 and with offsets time-locked to the end of sentence 6 (i.e., the 
wrap-up sentence). Other sentences (as well as the question) were not 
explicitly modeled and were considered background noise. Linear-order 
and set-inclusion relations were modeled within the same regressors. All 
epochs were convolved with a canonical hemodynamic response func-
tion (HRF). The time series data were high-pass filtered (1/128 Hz), and 
serial correlations were corrected using an autoregressive AR(1) model. 

2.9. fMRI: ROIs definition 

Regions of interest (ROIs) were regions in which greater activity was 
observed for transitive than non-transitive relations. The definition of 
these regions involved the following 3 steps. First, for each subject, brain 
activity associated with non-transitive relations was subtracted from 
brain activity associated with transitive relations across the whole-brain. 
Second, these contrast images (one for each participant) were submitted 
to a second-level one-sample t-test. Third, the resulting t-map was 
thresholded using the non-parametric permutation-based Threshold- 
Free Cluster Enhancement (TFCE) method (Smith and Nichols, 2009), 
implemented in the TFCE Toolbox r164 (http://dbm.neuro.uni-jena. 
de/tfce/). As in Schwartz et al. (2018), we had an a priori hypothesis 
that transitive relations would be processed in the IPS. Therefore, clus-
ters were considered significant at a Family-Wise Error- (FWE) corrected 
threshold of p < 0.05, either across the whole-brain or within an 
anatomical mask of the IPS (i.e., small volume correction) defined using 
the Anatomy Toolbox v2.2 (Eickhoff et al., 2005). Following Schwartz 
et al. (2018),the IPS mask consisted in voxels with at least 50% proba-
bility of belonging to one of the IPS subdivisions (hIP1, hIP2, and hIP3) 
as defined in the Anatomy Toolbox (Choi et al., 2006; Scheperjans et al., 
2008a, 2008b). 

2.10. fMRI: ROI analysis 

Activity in the ROIs defined using the procedure above was analyzed 
using both univariate and multivariate methods. First, we calculated for 
each participant the average activity associated with the contrast of 
transitive versus non-transitive relations within an ROI by averaging the 
fMRI signal across all voxels within that ROI. This average activity was 
then correlated with Calculation, Math fluency, and Applied problems 
raw scores at T1 and T2 across participants. 

Second, because such standard univariate regression analyses only 
show associations between two within-sample variables but do not have 
any predictive power (Gabrieli et al., 2015), we used a multivariate 
machine-learning approach with cross-validation to test whether brain 
activity associated with the contrast of transitive versus non-transitive 
relations could predict math scores of out-of-sample participants at 
both T1 and T2. This was done using the pipeline for pattern regression 
analyses provided by the Pattern Recognition for Neuroimaging Toolbox 
(PRoNTo) v2.0 implemented in Matlab (http://www.mlnl.cs.ucl.ac.uk/ 
pronto/) (Schrouff et al., 2013). This pipeline involves a training phase 
and a test phase (Portugal et al., 2016). During the training phase, a 
pattern regression model is trained by associating labels with spatial 
patterns of activity from a “training set”. During the test phase, the as-
sociation between patterns and labels (learned in the training phase) is 
used to predict the label of novel (i.e., out-of-sample) patterns from a 
“test set” (Schrouff et al., 2013). In the present study, spatial patterns 
were voxel-by-voxel patterns of activity for the contrast of transitive 
versus non-transitive relations from each ROI. Labels were Calculation, 
Math fluency, and Applied problems raw scores at both T1 and T2. 
Following studies suggesting that Kernel Ridge Regression (KRR) (Sha-
we-Taylor and Cristianini, 2004) is computationally effective and may 
give better prediction accuracy than other linear methods (Chu et al., 

2011), we used KRR to predict math scores. Briefly, KRR estimates a 
relationship between samples by minimizing an error function that in-
cludes the sum of the squared differences between model predictions 
and regression targets as well as a model regularization term (Taylor 
et al., 2017). Partitioning between the training and the test sets was done 
using a leave-one-subject-out cross-validation method. This involves 
leaving one participant out for test and training the model on 30 (i.e., n - 
1) participants. The procedure was then repeated 31 times, such that 
each participant was left out once. 

Prediction accuracy of the model was measured using the Pearson’s 
correlation coefficient (r) and the mean squared error (MSE) of the 
relationship between actual and predicted scores. Positive r values 
indicate that the model is able to predict the outcome, while negative r 
values (or r values close to 0) indicate that the model fails to predict the 
outcome. Statistical significance was calculated using permutation tests 
with 1000 iterations. That is, the value for each metric (i.e., r and MSE) 
was compared to the results of 1000 random permutations (representing 
the distribution of correlations corresponding to the null hypothesis). P 
values were calculated based on how many times the value obtained 
with random permutations was higher than the correlation value 
observed in the data (divided by 1000). 

3. Results 

3.1. ROIs definition 

ROIs involved in transitive reasoning were identified by contrasting 
activity associated with transitive relations to activity associated with 
non-transitive relations. As shown in Table 3 and Fig. 2, this contrast 
revealed significant activity in two clusters of the left IPS and one cluster 
of the right IPS. These clusters defined the voxels that were used in the 
subsequent univariate and multivariate analyses (see Methods). Spe-
cifically, both left IPS clusters constituted the left IPS ROI (158 voxels) 
and the right IPS cluster constituted the right IPS ROI (154 voxels). No 
region outside of the IPS survived whole-brain correction for multiple 
comparisons. 

3.2. Relationships between math scores, transitive reasoning performance, 
and univariate IPS activity 

Transitive reasoning performance was measured using accuracy to 
reasoning questions during the fMRI task at T1. Accuracy to reasoning 
questions ranged from 0.5 to 1 (average ¼ 0.75, SD ¼ 0.15). Accuracy to 
memory questions ranged from 0.61 to 1 (average ¼ 0.82, SD ¼ 0.12). 
Table 4 contains the correlations among math scores (at T1 and T2), 
accuracy to reasoning and memory questions, and univariate activity 
associated with the contrast of transitive versus non-transitive relations 
in the left and right IPS ROIs (all correlations partialled out differences 
in age and verbal IQ between participants). Although there was no 
relationship between Calculation scores and accuracy to Reasoning 
questions, there was a significant relationship between Calculation 

Table 3 
Clusters activated in the contrast of transitive versus non-transitive relations 
across all participants.  

Anatomical 
location 

Whole- 
brain 
PFWE-corr 

SVC 
PFWE- 

corr 

MNI coordinates t- 
score 

Cluster 
size 
(mm3) X Y Z 

Left hIP1/ 
hIP2 

0.102 0.002 � 46 � 46 38 4.88 644 

Left hIP1/ 
hIP3 

0.226 0.007 � 32 � 56 41 3.57 1568 

Right hIP1/ 
hIP2/hIP3 

0.368 0.004 42 � 48 41 4.03 2156 

Notes. BA: Brodmann area; MNI: Montreal Neurological Institute; SVC: Small 
Volume Correction; FWE-corr: Family-wise error corrected. 
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scores and univariate activity in the left and right IPS, at both T1 and T2 
(see Table 4). However, these brain-behavior correlations were specific 
to the Calculation subtest, as neither Math fluency nor Applied problem 
scores were correlated with univariate activity in the IPS (at T1 or T2). 
This was despite the fact that accuracy to reasoning questions did 
correlate with scores on these two subtests (but only at T1). Thus, uni-
variate activity associated with the contrast of transitive versus non- 
transitive relations was specifically related to math calculation skills 
at the time of scanning and 1.5 years later. 

3.3. Predictive power of multivariate activity associated with transitive 
reasoning 

The analyses above, however, only reflect in-sample associations 
between brain activity during the processing of transitive relations and 
math abilities. As such, they do not inform on whether brain activity 
during the processing of transitive relations may predict the outcome of 

out-of-sample individuals (Gabrieli et al., 2015). To address this ques-
tion, we used regression-based multivariate analyses with 
cross-validation. As in univariate analyses, age and measures of verbal 
IQ (general knowledge, comparison, and vocabulary) were included as 
confounding variables. These analyses tested whether patterns of IPS 
activity associated with the contrast of transitive versus non-transitive 
relations could accurately predict current math score in out-of-sample 
individuals, over and above differences in age and verbal IQ (see 
Methods). Accuracy of the machine learning algorithm was assessed by 
examining the relationship between actual and predicted math scores at 
T1. As shown in Fig. 3 (left), there was no relationship between actual 
and predicted Calculation scores in the left IPS at T1 (r ¼ � 0.07, p ¼
0.60; MSE ¼ 38.05, p ¼ 0.64) or T2 (r ¼ � 0.26, p ¼ 0.87; MSE ¼ 92.77, p 
¼ 0.89). However, the relationship was reliable in the right IPS at both 
T1 (r ¼ 0.60, p ¼ 0.002; MSE ¼ 11.87, p ¼ 0.006) and T2 (r ¼ 0.39, p ¼
0.04; MSE ¼ 23.92, p ¼ 0.01). Fig. 4 shows the consistency between the 
actual and the predicted Calculation score for each participant in the left 
and right IPS at both T1 and T2. In contrast to Calculation scores, there 
was no reliable relationship between actual and predicted Math fluency 
scores at either T1 or T2 (all rs < 0.11, all ps > 0.32; all MSEs > 466.17, 
all ps > 0.30). Similarly, there was no reliable relationship between 
actual and predicted Applied problem scores at either T1 or T2 (all rs <
0.06, all ps > 0.39; all MSEs > 54.31, all ps > 0.36). Consistencies be-
tween actual and predicted Math fluency and Applied problem scores 
are shown in Supplementary Fig. 1 and Supplementary Fig. 2. Therefore, 
patterns of right IPS activity associated with transitive relations pre-
dicted math calculation skills (but not arithmetic fluency or 
problem-solving skills) at the time of scanning and 1.5 years later. 

4. Discussion 

Over the past decades, developmental research on math learning has 
largely focused on exploring the role of mechanisms for representing 
numerical quantities (Ansari, 2008). Yet, acquiring math skills also in-
volves understanding relations between quantities and drawing in-
ferences based on these relations (Singley and Bunge, 2014). In keeping 
with this idea, recent behavioral studies suggest that understanding 
relations of transitivity may significantly contribute to math learning in 
children (Handley et al., 2004; Morsanyi et al., 2013; Morsanyi et al., 
2017a, 2017b). Here we tested whether the brain representations of 
transitive relations may predict current and future math skills in chil-
dren. Specifically, fMRI activity was measured while children listened to 
transitive and non-transitive relations embedded in a story context. 
Calculation, single-digit arithmetic, and problem-solving skills were also 
measured at the time of scanning (T1) and 18 months later (T2). A ma-
chine learning approach with cross validation was used to test whether 
activity associated with the contrast of transitive versus non-transitive 
relations could predict math skills at both T1 and T2. 

First, we found that transitive relations were associated with greater 
activity than non-transitive relations in the IPS. This is consistent with 

Fig. 2. Brain regions involved in transitive reasoning across all participants. 
Clusters in red are regions in which greater activity was observed for transitive 
than non-transitive relations. Yellow outlines delineate the IPS mask used for 
small volume correction (see Methods). Activations are overlaid on an inflated 
3D rendering of the MNI-normalized anatomical brain (lateral views of the left 
and right hemispheres). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Partial correlation matrix of math scores, performance on the transitive reasoning task, and univariate IPS activity, controlling for age and verbal IQ (General 
knowledge, Vocabulary, Comparison).   

1 2 3 4 5 6 7 8 9 10 

1- Calculation (T1) –                 
2- Math fluency (T1) 0.50 ** –               
3- Applied problems (T1) 0.47 ** 0.76 *** –             
4- Calculation (T2) 0.49 ** 0.49 ** 0.62 *** –           
5- Math fluency (T2) 0.31 y 0.74 *** 0.72 *** 0.68 *** –         
6- Applied problems (T2) 0.30  0.64 *** 0.81 *** 0.71 *** 0.73 *** –       
7- Reasoning (accuracy) 0.27  0.38 * 0.42 * 0.12  0.17  0.14 –      
8- Memory (accuracy) 0.41 * 0.11  0.10  � 0.01  0.02  � 0.05 0.47 ** –    
9- Left IPS (beta) 0.41 * � 0.02  0.06  0.50 ** 0.09  0.10 0.14  � 0.01 –   
10- Right IPS (beta) 0.34 y 0.02  � 0.09  0.41 * 0.04  � 0.07 0.07  � 0.12 0.84 *** – 

Notes. y, p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001. 
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several previous neuroimaging studies that have also found that tran-
sitive reasoning mainly relies on regions in and around the IPS (Goel and 
Dolan, 2001; Acuna et al., 2002; Knauff et al., 2002; Knauff et al., 2003; 
Heckers et al., 2004; Fangmeier et al., 2006; Hinton et al., 2010; Prado 
et al., 2010a, 2010b; Prado et al., 2013). For example, quantitative 
meta-analyses of the literature show that transitive reasoning consis-
tently activates the left and right IPS across studies in adults (Prado 
et al., 2011a; Wertheim and Ragni, 2018). A recent study in children also 
points to the involvement of the parietal cortex in transitive reasoning 
(Mathieu et al., 2015). Thus, together with these previous studies, our 
results suggest that the IPS houses mechanisms that are important for 
representing and processing transitive relations. This may be because 
transitive relations are mapped onto spatial mental models (Goodwin 
and Johnson-Laird, 2005) that are encoded and represented in the IPS 
(Alfred et al., 2018). 

Second, a major novel finding from the present study is that IPS 
activity associated with the contrast of transitive versus non-transitive 
relations was predictive of math skills at both T1 and T2. This predic-
tive power, however, was limited to math calculation skills as measured 
by the Calculation subtest of the Woodcock-Johnson III battery. That is, 
it was not observed with the Math fluency subtest (reflecting arithmetic 
fluency) and the Applied problems subtest (reflecting broader problem- 
solving skills). Why would neural activity in the (right) IPS during the 
processing of transitive relations specifically predict current and future 
calculation skills? One possibility is that math calculation recruits 

mechanisms supporting the processing of transitive relations in the IPS 
because numerical operations are inherently relational (i.e., they 
involve relating quantities to each other). Thus, activity related to 
transitive reasoning in the IPS may reflect the way this region processes 
relational information in children (Wendelken, 2015), which may in 
turn relate to their calculation skills. This possibility, however, is 
undermined by the fact that activity associated with transitive reasoning 
does not predict arithmetic fluency (as reflected by knowledge of 
single-digit problems in the Math fluency subtest). Even though they are 
largely thought to be retrieved from long-term memory rather than 
calculated (Campbell and Xue, 2001), single-digit arithmetic problems 
are also arguably relational and should therefore be related to IPS ac-
tivity as it reflects relational processing. 

Another possibility, which may be more likely, is that both transitive 
reasoning and calculation skills may rely on a set of IPS mechanisms 
involved in ordering information in working-memory. The role of the 
IPS in processing numerical and non-numerical ordinal information has 
been suggested by several studies (Marshuetz, 2005; Majerus et al., 
2006). Individuals with math learning disability, who exhibit anatom-
ical and functional impairment in the IPS, have also deficits when pro-
cessing ordinal information (Attout and Majerus, 2015; De Visscher 
et al., 2015). A prominent cognitive theory of human reasoning (i.e., the 
Mental Models theory) claims that integrating transitive relations relies 
on the representation and manipulation of ordered mental models in 
working memory (Goodwin and Johnson-Laird, 2005). The ability to 

Fig. 3. Results of multivariate analyses. (A) Pearson’s correlation coefficient (r) for the relationship between actual and predicted scores broken down by subtest 
(Calculation, Math fluency, and Applied problems) and time of testing (T1, T2). Error bars represent bootstrapped 95% confidence intervals. (B) Mean squared error 
(MSE) for the relationship between actual and predicted scores broken down by subtest (Calculation, Math fluency, and Applied problems) and time of testing (T1, 
T2). Error bars represent bootstrapped 95% confidence intervals. *, p < 0.05; **, p < 0.01; L., left; R., right. 
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order numerical information is also fundamental to arithmetic skills 
(Knops and Willmes, 2014; Lyons et al., 2014). Therefore, it is possible 
that a common reliance on ordinal working memory in the IPS underlies 
the relationship between the processing of transitive relations and 
arithmetic learning. Interestingly, this possibility would account for the 
fact that IPS activity associated with transitive reasoning is not associ-
ated with Math fluency scores. As mentioned above, single-digit arith-
metic problems are typically thought to be either directly retrieved from 
long-term memory or automatized through procedural knowledge by 
the end of elementary school (Thevenot et al., 2016). Thus, these 
problems are likely to rely to a lesser extent on working memory re-
sources and involve brain mechanisms supporting the retrieval of verbal 
information in the left temporo-parietal cortex, rather than right IPS 
mechanisms typically associated with working memory and more 
effortful calculation strategies (Zamarian et al., 2009; Prado et al., 
2011b). 

More generally, it is also noteworthy that the predictive relationship 
between neural activity associated with transitive reasoning and 
calculation skills was observed in the right rather than the left IPS. Both 
the right and left IPS are involved in math cognition (Sokolowski et al., 
2017; Arsalidou et al., 2018), but a dissociation may emerge during 
development. It has notably been suggested that the neural mechanisms 
supporting math skills may develop earlier in the right than in the left 
IPS, notably because they are involved in non-symbolic processing 
(Cantlon et al., 2006; Emerson and Cantlon, 2015; Vogel et al., 2015). 
Thus, although transitive reasoning has typically been associated with 

bilateral IPS activity (Goel and Dolan, 2003; Knauff et al., 2003; Fang-
meier et al., 2006; Prado et al., 2010a, 2010b; Mathieu et al., 2015; 
Schwartz et al., 2018), its interaction with math processing may be more 
readily observed in the right than left hemisphere in children. 

It is interesting to note that we did not find any relationship between 
IPS activity associated with transitive reasoning and Applied problems 
scores. One possibility is that transitive reasoning does not critically 
support math problem-solving skills (as measured by the Applied 
problems subtest) in the developmental range considered. For instance, 
transitive reasoning may be particularly important earlier on when 
acquiring foundational math concepts such as measurement, serial- 
order and categorization (Bryant and Kopytynska, 1976; Rabinowitz 
and Howe, 1994; Wright, 2001). Although this suggests that transitive 
reasoning and math problem-solving may be observed in children 
younger than the age range considered here, accuracy to reasoning 
questions was related to score on the Applied problems subtest in our 
sample (at least at the time of testing). Thus, it is likely that brain ac-
tivity during transitive reasoning also relates to Applied problems scores 
on some levels, even though this relation may be observed in brain re-
gions that were not identified here. For instance, the Applied problems 
subtest involves math word problems that may rely on brain regions 
involved in verbal processing and executive control in the prefrontal 
cortex (Prabhakaran et al., 2001; Newman et al., 2011). Unfortunately, 
we were not able to localize frontal brain regions involved in transitive 
reasoning at the whole-brain level. This might be investigated in future 
studies. 

Fig. 4. Individual predictions of Calculation scores. (A) Line plots showing the consistency between the actual and the predicted Calculation score for each 
participant in the left and right IPS at T1. (B) Line plots showing the consistency between the actual and the predicted Calculation score for each participant in the left 
and right IPS at T2. 
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Finally, we found that both univariate and multivariate activity 
associated with the neural processing of transitive relations in the IPS 
predicted calculation skills at T1 and T2, even though there was no 
behavioral relationship between transitive reasoning performance and 
calculation skills (over and above differences in age and verbal IQ). As 
pointed out by Evans et al. (2015), this may indicate that neurobiolog-
ical measures are more sensitive than behavioral measurements in 
predicting learning outcomes. For example, activity in the right inferior 
frontal gyrus has been found to predict long-term reading gains in 
children with dyslexia even though no behavioral measures of reading 
ability could do so (Hoeft et al., 2011). In the domain of math cognition, 
previous neuroimaging studies have found that neither measures of 
executive functions nor measures of numerical abilities could accurately 
predict short-term (Supekar et al., 2013) or long-term (Evans et al., 
2015) changes in math performance, whereas functional and anatomical 
brain measurements were predictive of learning. Therefore, our findings 
add to the growing evidence that brain measures have a unique potential 
for forecasting academic skills. 

In summary, the present longitudinal study indicates that the neural 
processing of transitive relations may predict current and future calcu-
lation skills in children. These results add to growing evidence that math 
learning does not only rely on the ability to process numerical quanti-
ties, but also critically involves the ability to understand and process 
logical relations (Singley and Bunge, 2014). Because calculation skills 
were not related to transitive reasoning performance, our findings also 
suggest that fMRI measures may be more sensitive than behavioral 
measures in predicting academic skills. Overall, the present results call 
for future studies investigating the relationship between neurobiological 
measures of relational reasoning and different types of math learning in 
younger children as well as in children with math learning disability. 
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